RESUMO
The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.
Assuntos
Barreira Hematoencefálica , Plexo Corióideo , Lipopolissacarídeos , Macrófagos , Doenças Neuroinflamatórias , Neutrófilos , Plexo Corióideo/metabolismo , Animais , Camundongos , Doenças Neuroinflamatórias/metabolismo , Barreira Hematoencefálica/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Masculino , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo , FemininoRESUMO
Located in each brain ventricle, choroid plexus (ChP) tissue forms a blood-CSF barrier and produces cerebrospinal fluid (CSF) and other supportive factors. Sheets of ChP epithelial cells enclose a vascularized stroma of mesenchymal, immune, and neuron/glia-like cells. Burgeoning ChP studies are revealing its complex set of functions across the lifespan. To view this SnapShot, open or download the PDF.
Assuntos
Encéfalo , Plexo Corióideo , Barreira Hematoencefálica , Longevidade , Células Epiteliais , Líquido CefalorraquidianoRESUMO
Despite evidence implicating microglia in the etiology and pathophysiology of major depression, there is paucity of information regarding the contribution of microglia-dependent molecular pathways to antidepressant procedures. In this study, we investigated the role of microglia in a mouse model of depression (chronic unpredictable stress-CUS) and its reversal by electroconvulsive stimulation (ECS), by examining the effects of microglia depletion with the colony stimulating factor-1 antagonist PLX5622. Microglia depletion did not change basal behavioral measures or the responsiveness to CUS, but it completely abrogated the therapeutic effects of ECS on depressive-like behavior and neurogenesis impairment. Treatment with the microglia inhibitor minocycline concurrently with ECS also diminished the antidepressant and pro-neurogenesis effects of ECS. Hippocampal RNA-Seq analysis revealed that ECS significantly increased the expression of genes related to neurogenesis and dopamine signaling, while reducing the expression of several immune checkpoint genes, particularly lymphocyte-activating gene-3 (Lag3), which was the only microglial transcript significantly altered by ECS. None of these molecular changes occurred in microglia-depleted mice. Immunohistochemical analyses showed that ECS reversed the CUS-induced changes in microglial morphology and elevation in microglial LAG3 receptor expression. Consistently, either acute or chronic systemic administration of a LAG3 monoclonal antibody, which readily penetrated into the brain parenchyma and was found to serve as a direct checkpoint blocker in BV2 microglia cultures, rapidly rescued the CUS-induced microglial alterations, depressive-like symptoms, and neurogenesis impairment. These findings suggest that brain microglial LAG3 represents a promising target for novel antidepressant therapeutics.
Assuntos
Transtorno Depressivo Maior , Microglia , Animais , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Neurogênese/fisiologiaRESUMO
The pathogenesis of neuropsychiatric lupus (NPSLE) is believed to include the entry of circulating neuropathic antibodies to the brain via a pathologically permeable blood-brain barrier (BBB). Nevertheless, direct evidence of BBB pathology or mechanisms underlying BBB dysfunction is missing. Here, we examined BBB integrity in an established NPSLE mouse model (MRL/faslpr/lpr). Surprisingly, challenging the barrier with various exogenous tracers demonstrated insignificant changes in BBB permeability. Furthermore, electron microscopy showed no ultrastructure changes supporting hyper-permeability. However, we found that abnormal function of the blood-cerebrospinal fluid barrier (BCSFB) in the choroid plexus underlies brain exposure to neuropathic antibodies. Considerable intrathecal lymphocyte infiltration likely occurs through the BCSFB, accompanied by epithelial hyper-permeability to antibodies. Our results challenge the commonly held view of BBB disruption in NPSLE, supporting a shift in focus to BCSFB dysfunction as a causative factor in the disease.
Assuntos
Encéfalo/imunologia , Plexo Corióideo/imunologia , Epitélio/patologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Linfócitos/imunologia , Animais , Autoanticorpos/metabolismo , Barreira Hematoencefálica , Encéfalo/patologia , Movimento Celular , Líquido Cefalorraquidiano , Modelos Animais de Doenças , Feminino , Humanos , Vasculite Associada ao Lúpus do Sistema Nervoso Central/patologia , Camundongos , Camundongos Endogâmicos MRL lpr , Mutação/genética , Permeabilidade , Receptor fas/genéticaRESUMO
The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use chronic two-photon imaging in awake mice and single-cell transcriptomics to demonstrate that in addition to these roles, the ChP is a complex immune organ that regulates brain inflammation. In a mouse meningitis model, neutrophils and monocytes accumulated in ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process, including the discovery of epithelial cells that transiently specialized to nurture immune cells, coordinate their recruitment, survival, and differentiation, and ultimately, control the opening/closing of the ChP brain barrier. Collectively, we provide a new conceptual understanding and comprehensive roadmap of neuroinflammation at the ChP brain barrier.
RESUMO
BACKGROUND: Several secreted factors have been identified as drivers of cerebral vasculature development and inducers of blood-brain barrier (BBB) differentiation. Vascular endothelial growth factor A (VEGF-A) is central for driving cerebral angiogenesis and Wnt family factors (Wnt7a, Wnt7b and norrin) are central for induction and maintenance of barrier properties. Expressed by developing neural tissue (neuron and glia progenitors), they influence the formation of central nervous system (CNS) vascular networks. Another type of factors are tissue-specific paracrine factors produced by endothelial cells (ECs), also known as 'angiocrine' factors, that provide instructive signals to regulate homeostatic and regenerative processes. Very little is known about CNS angiocrine factors and their role in BBB development. Angiomodulin (AGM) was reported to be expressed by developing vasculature and by pathological tumor vasculature. Here we investigated AGM in the developing CNS and its function as a potential BBB inducer. METHODS: We analyzed microarray data to identify potential angiocrine factors specifically expressed at early stages of barrier formation. We then tested AGM expression with immunofluorescence and real-time PCR in various organs during development, post-natal and in adults. Permeability induction with recombinant proteins (Miles assay) was used to test potential interaction of AGM with VEGF-A. RESULTS: Several angiocrine factors are differentially expressed by CNS ECs and AGM is a prominent CNS-specific angiocrine candidate. Contrary to previous reports, we found that AGM protein expression is specific to developing CNS endothelium and not to highly angiogenic developing vasculature in general. In skin vasculature we found that AGM antagonizes VEGF-A-induced vascular hyperpermeability. Finally, CNS AGM expression is not specific to BBB vasculature and AGM is highly expressed in non-BBB choroid-plexus vasculature. CONCLUSIONS: We propose AGM as a developmental CNS vascular-specific marker. AGM is not a pan-endothelial marker, nor a general marker for developing angiogenic vasculature. Thus, AGM induction in the developing CNS might be distinct from its induction in pathology. While AGM is able to antagonize VEGF-A-induced vascular hyperpermeability in the skin, its high expression levels in non-BBB CNS vasculature does not support its potential role as a BBB inducer. Further investigation including loss-of-function approaches might elucidate AGM function in the developing CNS.
Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Barreira Hematoencefálica/crescimento & desenvolvimento , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores/metabolismo , Plexo Corióideo/crescimento & desenvolvimento , Plexo Corióideo/metabolismo , Camundongos , Camundongos Endogâmicos ICRRESUMO
Diabetes mellitus (DM) significantly increases susceptibility to central nervous system (CNS) pathologies, including stroke, vascular dementia, cognitive deficits and Alzheimer's disease. Previous studies (mostly using the streptozotocin model) suggested that blood-brain barrier (BBB) disruption is involved in these conditions. Here, we examined the integrity of brain capillaries and BBB permeability in Leprdb/db obesity-related diabetic mice. Surprisingly, significant BBB leakage was observed only in young mice at the pre-hyperglycemic stage. Thorough examination of barrier permeability at later diabetic stages showed no evidence for significant BBB leakage during the hyperglycemic state. Electron microscopy imaging of mice with short-term hyperglycaemia supported normal BBB permeability but indicated other stress-related changes in capillary ultrastructure, such as mitochondrial degeneration. Based on our study with this mouse genetic model of obesity-related DM, we suggest that previously reported hyperglycaemia-induced BBB leakage is most likely not the underlying mechanism of DM-related CNS pathologies. Finally we propose that BBB hyper-permeability might be an early and transient phenomenon while stress-related endothelial pathologies do correlate with a short-term diabetic state.
Assuntos
Barreira Hematoencefálica/patologia , Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Hiperglicemia/fisiopatologia , Obesidade/fisiopatologia , Receptores para Leptina/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Feminino , Masculino , Camundongos , Camundongos KnockoutRESUMO
The central nervous system manifestations of systemic lupus erythematosus (SLE) remain poorly understood. Given the well-defined role of autoantibodies in other lupus manifestations, extensive work has gone into the identification of neuropathic autoantibodies. However, attempts to translate these findings to patients with SLE have yielded mixed results. We used the MRL/MpJ-Faslpr/lpr mouse, a well-established, spontaneous model of SLE, to establish the immune effectors responsible for brain disease. Transcriptomic analysis of the MRL/MpJ-Faslpr/lpr choroid plexus revealed an expression signature driving tertiary lymphoid structure formation, including chemokines related to stromal reorganization and lymphocyte compartmentalization. Additionally, transcriptional profiles indicated various stages of lymphocyte activation and germinal center formation. The extensive choroid plexus infiltrate present in MRL/MpJ-Faslpr/lpr mice with overt neurobehavioral deficits included locally proliferating B and T cells, intercellular interactions between lymphocytes and antigen-presenting cells, as well as evidence for in situ somatic hypermutation and class switch recombination. Furthermore, the choroid plexus was a site for trafficking lymphocytes into the brain. Finally, histological evaluation in human lupus patients with neuropsychiatric manifestations revealed increased leukocyte migration through the choroid plexus. These studies identify a potential new pathway underlying neuropsychiatric lupus and support tertiary lymphoid structure formation in the choroid plexus as a novel mechanism of brain-immune interfacing.
Assuntos
Plexo Corióideo , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Estruturas Linfoides Terciárias , Animais , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Plexo Corióideo/fisiopatologia , Modelos Animais de Doenças , Feminino , Vasculite Associada ao Lúpus do Sistema Nervoso Central/metabolismo , Vasculite Associada ao Lúpus do Sistema Nervoso Central/patologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/fisiopatologia , Camundongos , Camundongos Endogâmicos MRL lpr , Estruturas Linfoides Terciárias/metabolismo , Estruturas Linfoides Terciárias/patologia , Estruturas Linfoides Terciárias/fisiopatologia , TranscriptomaRESUMO
Experts have previously postulated a linkage between lupus associated vascular pathology and abnormal brain barriers in the immunopathogenesis of neuropsychiatric lupus. Nevertheless, there are some discrepancies between the experimental evidence, or its interpretation, and the working hypotheses prevalent in this field; specifically, that a primary contributor to neuropsychiatric disease in lupus is permeabilization of the blood brain barrier. In this commonly held view, any contribution of the other known brain barriers, including the blood-cerebrospinal fluid and meningeal barriers, is mostly excluded from the discussion. In this review we will shed light on some of the blood brain barrier hypotheses and try to trace their roots. In addition, we will suggest new research directions to allow for confirmation of alternative interpretations of the experimental evidence linking the pathology of intra-cerebral vasculature to the pathogenesis of neuropsychiatric lupus.