Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 69(5): 1579-86, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18035214

RESUMO

PURPOSE: To assess the impact of new technologies on deviation rates in radiation therapy (RT). METHODS AND MATERIALS: Treatment delivery deviations in RT were prospectively monitored during a time of technology upgrade. In January 2003, our department had three accelerators, none with "modern" technologies (e.g., without multileaf collimators [MLC]). In 2003 to 2004, we upgraded to five new accelerators, four with MLC, and associated advanced capabilities. The deviation rates among patients treated on "high-technology" versus "low-technology" machines (defined as those with vs. without MLC) were compared over time using the two-tailed Fisher's exact test. RESULTS: In 2003, there was no significant difference between the deviation rate in the "high-technology" versus "low-technology" groups (0.16% vs. 0.11%, p = 0.45). In 2005 to 2006, the deviation rate for the "high-technology" groups was lower than the "low-technology" (0.083% vs. 0.21%, p = 0.009). This difference was caused by a decline in deviations on the "high-technology" machines over time (p = 0.053), as well as an unexpected trend toward an increase in deviations over time on the "low-technology" machines (p = 0.15). CONCLUSIONS: Advances in RT delivery systems appear to reduce the rate of treatment deviations. Deviation rates on "high-technology" machines with MLC decline over time, suggesting a learning curve after the introduction of new technologies. Associated with the adoption of "high-technology" was an unexpected increase in the deviation rate with "low-technology" approaches, which may reflect an over-reliance on tools inherent to "high-technology" machines. With the introduction of new technologies, continued diligence is needed to ensure that staff remain proficient with "low-technology" approaches.


Assuntos
Aceleradores de Partículas/instrumentação , Radioterapia/instrumentação , Humanos , Aceleradores de Partículas/normas , Estudos Prospectivos , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia/normas , Tecnologia Radiológica/instrumentação , Tecnologia Radiológica/normas
2.
Front Oncol ; 3: 69, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23616946

RESUMO

PURPOSE/OBJECTIVE: While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR) eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality, or productivity. METHODOLOGY: In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT) specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes. RESULTS: Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes, and treatment summaries; the latter includes treatment plans, daily therapy records, and quality assurance reports. To manage the former, we utilized the enterprise-wide system, which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage "Radiation Oncology" data, we used our existing system (ARIA, Varian Medical Systems.) The ability to access both systems simultaneously from a single workstation (WS) was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality, or confidentiality. However, compared to paper charts, time required by clinicians to access/enter patient information has substantially increased. While productivity is improving with experience, substantial growth will require better integration of the system components, decreased access times, and improved user interfaces. $127K was spent on new hardware and software; elimination of paper yields projected savings of $21K/year. One year after conversion to an EMR, more than 90% of department staff favored the EMR over the previous paper charts. CONCLUSION: Successful implementation of a Radiation Oncology EMR required not only the effort and commitment of all functions of the department, but support from senior health system management, corporate IT, and vendors. Realization of the full benefits of an EMR will require experience, faster/better integrated software, and continual improvement in underlying clinical processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA