Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 76(2): 663-78, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26479724

RESUMO

PURPOSE: Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing three-dimensional (3D) analytical phantoms are unable to accurately model shapes of biomedical interest. The goal of this study was to demonstrate that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. METHODS: The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D and two-dimensional (2D) MRI acquisitions was described. RESULTS: Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D and 2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing compared with equivalent voxelized/rasterized phantoms. CONCLUSION: Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. Magn Reson Med 76:663-678, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Biomimética/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Imagens de Fantasmas , Animais , Simulação por Computador , Análise de Fourier , Humanos , Imageamento por Ressonância Magnética/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
J Biomech Eng ; 137(5): 051004, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25367177

RESUMO

This paper describes the process in which complex lesion geometries (specified by computer generated perfusion defects) are incorporated in the description of nonlinear finite element (FE) mechanical models used for specifying the motion of the left ventricle (LV) in the 4D extended cardiac torso (XCAT) phantom to simulate gated cardiac image data. An image interrogation process was developed to define the elements in the LV mesh as ischemic or infarcted based upon the values of sampled intensity levels of the perfusion maps. The intensity values were determined for each of the interior integration points of every element of the FE mesh. The average element intensity levels were then determined. The elements with average intensity values below a user-controlled threshold were defined as ischemic or infarcted depending upon the model being defined. For the infarction model cases, the thresholding and interrogation process were repeated in order to define a border zone (BZ) surrounding the infarction. This methodology was evaluated using perfusion maps created by the perfusion cardiac-torso (PCAT) phantom an extension of the 4D XCAT phantom. The PCAT was used to create 3D perfusion maps representing 90% occlusions at four locations (left anterior descending (LAD) segments 6 and 9, left circumflex (LCX) segment 11, right coronary artery (RCA) segment 1) in the coronary tree. The volumes and shapes of the defects defined in the FE mechanical models were compared with perfusion maps produced by the PCAT. The models were incorporated into the XCAT phantom. The ischemia models had reduced stroke volume (SV) by 18-59 ml. and ejection fraction (EF) values by 14-50% points compared to the normal models. The infarction models, had less reductions in SV and EF, 17-54 ml. and 14-45% points, respectively. The volumes of the ischemic/infarcted regions of the models were nearly identical to those volumes obtained from the perfusion images and were highly correlated (R² = 0.99).


Assuntos
Circulação Coronária , Análise de Elementos Finitos , Ventrículos do Coração/fisiopatologia , Fenômenos Mecânicos , Modelos Cardiovasculares , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Fenômenos Biomecânicos , Tomografia Computadorizada por Emissão de Fóton Único de Sincronização Cardíaca , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Isquemia Miocárdica/diagnóstico por imagem , Dinâmica não Linear , Imagens de Fantasmas
3.
J Thorac Imaging ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034758

RESUMO

PURPOSE: We sought to clinically validate a fully automated deep learning (DL) algorithm for coronary artery disease (CAD) detection and classification in a heterogeneous multivendor cardiac computed tomography angiography data set. MATERIALS AND METHODS: In this single-centre retrospective study, we included patients who underwent cardiac computed tomography angiography scans between 2010 and 2020 with scanners from 4 vendors (Siemens Healthineers, Philips, General Electrics, and Canon). Coronary Artery Disease-Reporting and Data System (CAD-RADS) classification was performed by a DL algorithm and by an expert reader (reader 1, R1), the gold standard. Variability analysis was performed with a second reader (reader 2, R2) and the radiologic reports on a subset of cases. Statistical analysis was performed stratifying patients according to the presence of CAD (CAD-RADS >0) and obstructive CAD (CAD-RADS ≥3). RESULTS: Two hundred ninety-six patients (average age: 53.66 ± 13.65, 169 males) were enrolled. For the detection of CAD only, the DL algorithm showed sensitivity, specificity, accuracy, and area under the curve of 95.3%, 79.7%, 87.5%, and 87.5%, respectively. For the detection of obstructive CAD, the DL algorithm showed sensitivity, specificity, accuracy, and area under the curve of 89.4%, 92.8%, 92.2%, and 91.1%, respectively. The variability analysis for the detection of obstructive CAD showed an accuracy of 92.5% comparing the DL algorithm with R1, and 96.2% comparing R1 with R2 and radiology reports. The time of analysis was lower using the DL algorithm compared with R1 (P < 0.001). CONCLUSIONS: The DL algorithm demonstrated robust performance and excellent agreement with the expert readers' analysis for the evaluation of CAD, which also corresponded with significantly reduced image analysis time.

4.
J Nucl Cardiol ; 20(1): 84-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151753

RESUMO

BACKGROUND: Partial volume effects (PVEs) in PET imaging result in incorrect regional activity estimates due to both spill-out and spill-in from activity in neighboring regions. It is important to compensate for both effects to achieve accurate quantification. In this study, an image-based partial volume compensation (PVC) method was developed and validated for cardiac PET. METHODS AND RESULTS: The method uses volume-of-interest (VOI) maps segmented from contrast-enhanced CTA images to compensate for both spill-in and spill-out in each VOI. The PVC method was validated with simulation studies and also applied to images of dog cardiac perfusion PET data. The PV effects resulting from cardiac motion and myocardial uptake defects were investigated and the efficacy of the proposed PVC method in compensating for these effects was evaluated. RESULTS: Results indicate that the magnitude and the direction of PVEs in cardiac imaging change over time. This affects the accuracy of activity distributions estimates obtained during dynamic studies. The defect regions have different PVEs as compared to the normal myocardium. Cardiac motion contributes around 10% to the PVEs. PVC effectively removed both spill-in and spill-out in cardiac imaging. CONCLUSIONS: PVC improved left ventricular wall uniformity and quantitative accuracy. The best strategy for PVC was to compensate for the PVEs in each cardiac phase independently and treat severe uptake defects as independent regions from the normal myocardium.


Assuntos
Coração/diagnóstico por imagem , Miocárdio/patologia , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Animais , Encéfalo/patologia , Simulação por Computador , Cães , Humanos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Fatores de Tempo , Função Ventricular Esquerda
5.
AJR Am J Roentgenol ; 198(6): 1380-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623552

RESUMO

OBJECTIVE: The aim of this in vitro study was to examine the capability of three protocols of dual-energy CT imaging in distinguishing calcium oxalate, calcium phosphate, and uric acid kidney stones. MATERIALS AND METHODS: A total of 48 calcium oxalate, calcium phosphate, and uric acid human kidney stone samples were placed in individual containers inside a cylindric water phantom and imaged with a dual-energy CT scanner using the following three scanning protocols of different combinations of tube voltage, with and without a tin filter: 80 and 140 kVp without a tin filter, 100 and 140 kVp with a tin filter, and 80 and 140 kVp with a tin filter. The mean attenuation value (in Hounsfield units) of each stone was recorded in both low- and high-energy CT images in each protocol. The dual-energy ratio of the mean attenuation values of each stone was computed for each protocol. RESULTS: For all three protocols, the uric acid stones were significantly different (p < 0.001) from the calciferous stones according to their dual-energy ratio values. For differentiating calcium oxalate and calcium phosphate stones, the difference between their dual-energy ratio values was statistically significant, with different degrees of significance (range, p < 0.001 to p = 0.03) for all three protocols. On the basis of the values of the area under receiver operating characteristic curve (AUC) of calcified stone differentiation, the three protocols were ranked in the following order: the 80- and 140-kVp tin filter protocol (AUC, 0.996), the 100- and 140-kVp tin filter protocol (AUC, 0.918), and the 80- and 140-kVp protocol (AUC, 0.871). CONCLUSION: The tin filter added to the high-energy tube and the use of a wider dual-energy difference are important for improving the stone differentiation capability of dual-energy CT imaging.


Assuntos
Cálculos Renais/química , Cálculos Renais/diagnóstico por imagem , Estanho , Tomografia Computadorizada por Raios X/instrumentação , Análise de Variância , Oxalato de Cálcio/análise , Fosfatos de Cálcio/análise , Humanos , Técnicas In Vitro , Imagens de Fantasmas , Curva ROC , Ácido Úrico/análise
6.
Radiol Artif Intell ; 4(2): e210196, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35391773

RESUMO

The purpose of this work was to assess the performance of a convolutional neural network (CNN) for automatic thoracic aortic measurements in a heterogeneous population. From June 2018 to May 2019, this study retrospectively analyzed 250 chest CT scans with or without contrast enhancement and electrocardiographic gating from a heterogeneous population with or without aortic pathologic findings. Aortic diameters at nine locations and maximum aortic diameter were measured manually and with an algorithm (Artificial Intelligence Rad Companion Chest CT prototype, Siemens Healthineers) by using a CNN. A total of 233 examinations performed with 15 scanners from three vendors in 233 patients (median age, 65 years [IQR, 54-72 years]; 144 men) were analyzed: 68 (29%) without pathologic findings, 72 (31%) with aneurysm, 51 (22%) with dissection, and 42 (18%) with repair. No evidence of a difference was observed in maximum aortic diameter between manual and automatic measurements (P = .48). Overall measurements displayed a bias of -1.5 mm and a coefficient of repeatability of 8.0 mm at Bland-Altman analyses. Contrast enhancement, location, pathologic finding, and positioning inaccuracy negatively influenced reproducibility (P < .003). Sites with dissection or repair showed lower agreement than did sites without. The CNN performed well in measuring thoracic aortic diameters in a heterogeneous multivendor CT dataset. Keywords: CT, Vascular, Aorta © RSNA, 2022.

7.
Med Phys ; 48(7): 3479-3499, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838055

RESUMO

PURPOSE: In this work, we explore the potential of region-of-interest (ROI) imaging in x-ray computed tomography (CT). Using two dynamic beam attenuator (DBA) concepts for fluence field modulation (FFM) previously developed, we investigate and evaluate the potential dose savings in comparison with current FFM technology. METHODS: ROI imaging is a special application of FFM where the bulk of x-ray radiation is propagated toward a certain anatomical target (ROI), specified by the imaging task, while the surrounding tissue is spared from radiation. We introduce a criterion suitable to quantitatively describe the balance between image quality inside an ROI and total radiation dose with respect to a given ROI imaging task. It accounts for the mean image variance at the ROI and the effective patient dose calculated from Monte Carlo simulations. The criterion is further used to compile task-specific DBA trajectories determining the primary x-ray fluence, and eventually used for comparing different FFM techniques, namely the sheet-based dynamic beam attenuator (sbDBA), the z-aligned sbDBA (z-sbDBA), and an adjustable static operation mode of the z-sbDBA. Furthermore, two static bowtie filters and the influence of tube current modulation (TCM) are included in the comparison. RESULTS: Our findings demonstrate by simulations that the presented trajectory optimization method determines reasonable DBA trajectories. The influence of TCM is strongly depending on the imaging task. The narrow bowtie filter allows for dose reductions of about 10% compared to the regular bowtie filter in the considered ROI imaging tasks. The DBAs are shown to realize substantially larger dose reductions. In our cardiac imaging scenario, the DBAs can reduce the effective dose by about 30% (z-sbDBA) or 60% (sbDBA). We can further verify that the noise characteristics are not adversely affected by the DBAs. CONCLUSION: Our research demonstrates that ROI imaging using the presented DBA concepts is a promising technique toward a more patient- and task-specific CT imaging requiring lower radiation dose. Both the sbDBA and the z-sbDBA are potential technical solutions for realizing ROI imaging in x-ray CT.


Assuntos
Tecnologia , Tomografia Computadorizada por Raios X , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Raios X
8.
Med Phys ; 47(10): 4827-4837, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32754971

RESUMO

PURPOSE: We present a new concept for dynamic fluence field modulation (FFM) in x-ray computed tomography (CT). The so-called z-aligned sheet-based dynamic beam attenuator (z-sbDBA) is developed to dynamically compensate variations in patient attenuation across the fan beam and the projection angle. The goal is to enhance image quality and to reduce patient radiation dose. METHODS: The z-sbDBA consists of an array of attenuation sheets aligned along the z direction. In neutral position, the array is focused toward the focal spot. Tilting the z-sbDBA defocuses the sheets, thus reducing the transmission for larger fan beam angles. The structure of the z-sbDBA significantly differs from the previous sheet-based dynamic beam attenuator (sbDBA) in two features: (a) The sheets of the z-sbDBA are aligned parallel to the detector rows, and (b) the height of the sheets increases from the center toward larger fan beam angles. We built a motor actuated prototype of the z-sbDBA integrated into a clinical CT scanner. In experiments, we investigated its feasibility for FFM. We compared the z-sbDBA to common CT bowtie filters in terms of the spectral dependency of the transmission and possible image variance distribution in reconstructed phantom images. Additionally, the potential radiation dose saving using z-sbDBA for region-of-interest (ROI) imaging was studied. RESULTS: Our experimental results confirm that the z-sbDBA can realize variable transmission profiles of the radiation fluence by only small tilts. Compared to the sbDBA, the z-sbDBA can mitigate some practical and mechanical issues. In comparison to bowtie filters, the spectral dependency is considerably reduced when using the z-sbDBA. Likewise, more homogeneous image variance distributions can be attained in reconstructed phantom images. The z-sbDBA allows controlling the spatial image variance distribution which makes it suitable for ROI imaging. Our comparison on ROI imaging reveals skin dose reductions of up to 35% at equal ROI image quality by using the z-sbDBA. CONCLUSION: Our new concept for FFM in x-ray CT, the z-sbDBA, was experimentally validated on a clinical CT scanner. It facilitates dynamic FFM by realizing variable transmission profiles across the fan beam angle on a projection-wise basis. This key feature allows for substantial improvements in image quality, a reduction in patient radiation dose, and additionally provides a technical solution for ROI imaging.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Doses de Radiação , Raios X
9.
IEEE Trans Radiat Plasma Med Sci ; 3(1): 31-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33829118

RESUMO

Optimal treatment planning for radioembolization of hepatic cancers produces sufficient dose to tumors for control and dose to normal liver parenchyma that is below the threshold for toxicity. The non-uniform distribution of particles in liver microanatomy complicates the planning process as different functional regions receive different doses. Having realistic and patient-specific models of the arterial tree and microsphere trapping would be useful for developing more optimal treatment plans. We propose a macrocell-based growth method to generate models of the hepatic arterial tree from the proper hepatic artery to the terminal arterioles supplying the capillaries in the parenchyma. We show how these trees can be adapted to match patient values of pressure, flow, and vessel diameters while still conforming to laws controlling vessel bifurcation, changes in pressure, and blood flow. We also introduce a method to model particle transport within the tree that accounts for vessel and particle diameter distributions and show the non-uniform microsphere deposition pattern that results. Potential applications include investigating dose heterogeneity and microsphere deposition patterns.

10.
Med Phys ; 46(12): 5528-5537, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31348527

RESUMO

PURPOSE: It has been a long-standing wish in computed tomography (CT) to compensate the emitted x-ray beam intensity for the patient's changing attenuation during the rotation of a CT data acquisition. The patient attenuation changes both spatially, along the fan beam angle, and temporally, between different projections. By modifying the pre-patient x-ray intensity profile according to the attenuation properties of the given object, image noise can be homogenized and dose can be delivered where it is really needed. Current state-of-the-art bowtie filters are not capable of changing attenuation profiles during the CT data acquisition. In our work, we present the sheet-based dynamic beam attenuator (sbDBA), a novel technical concept enabling dynamic shaping of the transmission profile. METHODS: The sbDBA consists of an array of closely spaced, highly attenuating metal sheets, focused toward the focal spot. Intensity modulation can be achieved by controlled defocusing of the array such that the attenuation of the x-ray fan beam depends on the fan angle. The sbDBA concept was evaluated in Monte-Carlo (MC) simulations regarding its spectral and scattering properties. A prototype of the sbDBA was installed in a clinical CT scanner and measurements evaluating the feasibility and the performance of the sbDBA concept were carried out. RESULTS: Experimental measurements on a CT scanner demonstrate the ability of the sbDBA to produce an attenuation profile that can be changed in width and location. Furthermore, the sbDBA shows constant transmission properties at various tube voltages. A small effect of the flying focal spot (FFS) position on the transmission profile can be observed. MC simulations confirm the essential properties of the sbDBA: In contrast to conventional bowtie filters, the sbDBA has almost no impact on the energy spectrum of the beam and there is negligible scatter emission toward the patient. CONCLUSIONS: A new concept for dynamic beam attenuation has been presented and its ability to dynamically shape the transmission profile has successfully been demonstrated. Advantages compared to regular bowtie filters including the lack of filter-induced beam hardening and scatter have been confirmed. The novel concept of a DBA paves the way toward region of interest (ROI) imaging and further reductions in patient dose.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Espalhamento de Radiação , Software
11.
J Vasc Surg ; 48(2): 303-9; discusion 309-10, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18644477

RESUMO

OBJECTIVES: Significant stent graft remodeling commonly occurs after endovascular repair of thoracic aortic dissections because of continuing expansion of the true lumen. A suboptimal proximal landing zone, minimal oversizing, and lack of a healthy distal attachment site are unique factors affecting long-term stent graft stability. We used computational fluid dynamic techniques to analyze the biomechanical factors associated with stent graft remodeling in these patients. PATIENTS AND METHODS: A series of computational fluid dynamic models were constructed to investigate the biomechanical factors affecting the drag force on a thoracic stent graft. The resultant drag force as a net change of fluid momentum was calculated on the basis of varying three-dimensional geometry and deployment positions. A series of 12 patients with type B aortic dissections treated by thoracic stent graft and followed up for more than 12 months were then studied. Computed tomography transaxial images of each patient shortly after stent graft deployment and on subsequent follow-up were used to generate three-dimensional geometric models that were then fitted with a surface mesh. Computational fluid dynamic simulations were then performed on each stent graft model according to its geometric parameters to determine the actual change in drag force experienced by the stent graft as it remodels over time. RESULTS: The drag force on the stent graft model increases linearly with its internal diameter and becomes highest when the deployment position is closer to the proximal arch. Aortic curvature is not a significant factor. Serial computed tomography scans of patients showed an increase in mean inlet area from 1030 mm(2) to 1140 mm(2), and mean outlet area from 586 mm(2) to 884 mm(2) (increase of 11% and 58%, respectively; P = .05, .01). These increases are associated with a change in resultant drag force on the stent graft from 21.0 N to 24.8 N (mean increase, 19.5%; range, 0%-63.2%; P = .002). There is a positive relationship between increase in drag force and increase in stent-graft area. CONCLUSION: The drag force on thoracic stent grafts is high. A significant change in stent-graft diameter occurs after endovascular repair for type B dissections, which is associated with an increase in hemodynamic drag force. These stent grafts may be subjected to a higher risk of distal migration, and continuing surveillance is mandatory.


Assuntos
Angioplastia/métodos , Aneurisma da Aorta Torácica/cirurgia , Dissecção Aórtica/cirurgia , Velocidade do Fluxo Sanguíneo/fisiologia , Resistência ao Cisalhamento , Stents , Adulto , Idoso , Dissecção Aórtica/diagnóstico por imagem , Aneurisma da Aorta Torácica/diagnóstico por imagem , Fenômenos Biomecânicos/métodos , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Probabilidade , Desenho de Prótese , Falha de Prótese , Radiografia , Estudos de Amostragem , Sensibilidade e Especificidade , Estresse Mecânico , Resultado do Tratamento
12.
Comput Biol Med ; 38(4): 484-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18342843

RESUMO

In treating thoracic aortic diseases, endovascular repair involves the placement of a self-expanding stent-graft system across the diseased thoracic aorta. Computational fluid dynamic techniques are applied to model the blood flow by numerically solving the three-dimensional continuity equation and the time-dependent Navier-Stokes equations for an incompressible fluid. From our results, high blood pressure level and high systolic slope of the pressure waveform will significantly increase the drag force on a stent-graft whereas high blood viscosity causes only a mild increase. It indicates that hemodynamic factors might have an important impact on the drag force and thus play a significant role in the risk of stent-graft failure.


Assuntos
Angioplastia/instrumentação , Aneurisma da Aorta Torácica/cirurgia , Implante de Prótese Vascular , Hemodinâmica/fisiologia , Computação Matemática , Stents , Aorta Torácica/fisiopatologia , Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Viscosidade Sanguínea/fisiologia , Simulação por Computador , Análise de Falha de Equipamento , Humanos , Resistência ao Cisalhamento
13.
IEEE Trans Med Imaging ; 37(3): 680-692, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28809677

RESUMO

The four-dimensional (4-D) eXtended CArdiac-Torso (XCAT) series of phantoms was developed to provide accurate computerized models of the human anatomy and physiology. The XCAT series encompasses a vast population of phantoms of varying ages from newborn to adult, each including parameterized models for the cardiac and respiratory motions. With great flexibility in the XCAT's design, any number of body sizes, different anatomies, cardiac or respiratory motions or patterns, patient positions and orientations, and spatial resolutions can be simulated. As such, the XCAT phantoms are gaining a wide use in biomedical imaging research. There they can provide a virtual patient base from which to quantitatively evaluate and improve imaging instrumentation, data acquisition, techniques, and image reconstruction and processing methods which can lead to improved image quality and more accurate clinical diagnoses. The phantoms have also found great use in radiation dosimetry, radiation therapy, medical device design, and even the security and defense industry. This review paper highlights some specific areas in which the XCAT phantoms have found use within biomedical imaging and other fields. From these examples, we illustrate the increasingly important role that computerized phantoms and computer simulation are playing in the research community.


Assuntos
Imageamento Tridimensional , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Simulação por Computador , Humanos , Radiometria
14.
Invest Radiol ; 53(12): 728-735, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30015677

RESUMO

OBJECTIVE: The aim of this study was to compare the effects of combined virtual monoenergetic extrapolation (VME) of dual-energy computed tomography data and iterative metal artifact reduction (iMAR) at higher photon energies on low- and high-density metal artifacts and overall image quality of the ankle arthroplasty implants with iMAR, weighted filtered back projection (WFBP), and WFBP-based VME. MATERIALS AND METHODS: Total ankle arthroplasty implants in 6 human cadaver ankles served as surrogates for arthroplasty implants. All specimens underwent computed tomography with a 2 × 192-slice dual-source computed tomography scanner at tube voltages of 80 and tin-filtered 150 kVp to produce mixed 120 kVp equivalent polychromatic and virtual monoenergetic extrapolated images at 150 and 190 keV (VME 150 and VME 190, respectively). By implementing the WFBP and iMAR reconstruction algorithms on polychromatic, VME 150 and VME 190 data, 6 image datasets were created: WFBP-Polychromatic, iMAR-Polychromatic, WFBP-VME 150, WFBP-VME 190, iMAR-VME 150, and iMAR-VME 190. High-density and low-density artifacts were separately quantified with a threshold-based computer algorithm. After anonymization and randomization, 2 observers independently ranked the datasets for overall image quality. Repeated measures analysis of variance, Friedman, and Cohen weighted κ tests were applied for statistical analysis. A conservative P value of less than 0.001 was considered statistically significant. RESULTS: iMAR-VME 190 keV and iMAR-VME 150 keV created the least amount of high-density artifacts (all P < 0.001), whereas iMAR-Polychromatic was the most effective method to mitigate low-density streaks (P < 0.001). For low- and high-density artifacts, polychromatic iMAR acquisition was superior to WFBP-VME 150 keV and WFBP-VME 190 keV (all P < 0.001). On sharp kernel reconstructions, readers ranked the overall image quality of iMAR-Polychromatic images highest (all P < 0.001). Similarly, on soft tissue kernel reconstructions, readers ranked iMAR-Polychromatic images highest with a statistically significant difference over other techniques (all P < 0.001), except for iMAR-VME 150 keV (P = 0.356). CONCLUSIONS: In computed tomography imaging of ankle arthroplasty implants, iMAR reconstruction results in fewer metal artifacts and better image quality than WFBP reconstruction for both polychromatic and virtual monoenergetic data. The combination of iMAR and VME at higher photon energies results in mixed effects on implant-induced metal artifacts, including decreased high-density and increased low-density artifacts, which in combination does not improve image quality over iMAR reconstruction of the polychromatic data. Our results suggest that, for ankle arthroplasty implants, the highest image quality is obtained by iMAR reconstruction of the polychromatic data without the need to implement VME at high-energy levels.


Assuntos
Artroplastia de Substituição do Tornozelo/instrumentação , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Metais , Próteses e Implantes , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Articulação do Tornozelo/diagnóstico por imagem , Cadáver , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Fótons
16.
J Magn Reson ; 188(1): 141-50, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17646119

RESUMO

The direct Fourier transform method is a straightforward solution with high accuracy for reconstructing magnetic resonance (MR) images from nonuniformly sampled k-space data, given that the optimal density compensation function is selected and the underlying magnetic field is sufficiently uniform. The computation however is very time-consuming, making it impractical especially for large-size images. In this paper, the least squares quantization table (LSQT) method is proposed to accelerate the direct Fourier transform computation, similar to the recently proposed methods such as using look-up table (LUT) or equal-phase-line (EPL). With LSQT, all the image pixels are first classified into several groups where the Lloyd-Max quantization scheme is used to ensure the minimal classification error. The representative value of each group is stored in a small-size LSQT in advance to reduce the computational load. The pixels in the same group receive the same contribution, which is calculated only once for each group instead of for each pixel, resulting in the reduction of computation because the number of groups is far smaller than the number of pixels. Finally, each image pixel is mapped into the nearest group and its representative value is used to reconstruct the image. The experimental results show that the LSQT method requires far smaller memory size than the LUT method and fewer multiplication operations than the LUT and EPL methods. Moreover, the LSQT method can perform large-size reconstructions that achieve comparable or higher accuracy as compared to the EPL and gridding methods when the appropriate parameters are given. The inherent parallel structure also makes the LSQT method easily adaptable to a multiprocessor system.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
17.
Med Phys ; 44(9): 4677-4686, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28639400

RESUMO

PURPOSE: This work concerns computed tomography (CT)-based cardiac functional analysis (CFA) with a reduced radiation dose. As CT-CFA requires images over the entire heartbeat, the scans are often performed at 10-20% of the tube current settings that are typically used for coronary CT angiography. A large image noise then degrades the accuracy of motion estimation. Moreover, even if the scan was performed during the sinus rhythm, the cardiac motion observed in CT images may not be cyclic with patients with atrial fibrillation. In this study, we propose to use two CT scan data, one for CT angiography at a quiescent phase at a standard dose and the other for CFA over the entire heart beat at a lower dose. METHODS: We have made the following four modifications to an image-based cardiac motion estimation method we have previously developed for a full-dose retrospectively gated coronary CT angiography: (a) a full-dose prospectively gated coronary CT angiography image acquired at the least motion phase was used as the reference image; (b) a three-dimensional median filter was applied to lower-dose retrospectively gated cardiac images acquired at 20 phases over one heartbeat in order to reduce image noise; (c) the strength of the temporal regularization term was made adaptive; and (d) a one-dimensional temporal filter was applied to the estimated motion vector field in order to decrease jaggy motion patterns. We describe the conventional method iME1 and the proposed method iME2 in this article. Five observers assessed the accuracy of the estimated motion vector field of iME2 and iME1 using a 4-point scale. The observers repeated the assessment with data presented in a new random order 1 week after the first assessment session. RESULTS: The study confirmed that the proposed iME2 was robust against the mismatch of noise levels, contrast enhancement levels, and shapes of the chambers. There was a statistically significant difference between iME2 and iME1 (accuracy score, 2.08 ± 0.81 versus 2.77 ± 0.98, P < 0.01) and the improvement by the score of + 0.69 seemed clinically relevant. Inter-observer concordance was good: The inter-class correlation coefficient was 0.63 and Kendall's rank correlation coefficients were in the range of 0.41-0.67 (P < 0.01), respectively. Intra-observer reproducibility between sessions was good with the inter-class correlation coefficient of 0.76. CONCLUSION: We have proposed iME2 method for CT-CFA with two CT scans. The observer study verified the robustness and accuracy of iME2 method and its improved performance over iME1 method.


Assuntos
Algoritmos , Angiografia Coronária , Tomografia Computadorizada por Raios X , Artefatos , Humanos , Movimento (Física) , Doses de Radiação , Reprodutibilidade dos Testes
18.
Leukemia ; 31(6): 1398-1407, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27881872

RESUMO

Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation, and likely one or more solar particle events (SPEs). Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions. We show that exposing human hematopoietic stem/progenitor cells (HSC) to extended mission-relevant doses of accelerated high-energy protons and iron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces in vitro colony formation; (3) markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, of what appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone. Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.


Assuntos
Radiação Cósmica/efeitos adversos , Exposição Ocupacional/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Lesões por Radiação/etiologia , Esplenomegalia/etiologia , Células-Tronco/patologia , Adulto , Animais , Apoptose , Astronautas , Carga Corporal (Radioterapia) , Proliferação de Células , Exoma/genética , Feminino , Genoma Humano , Humanos , Técnicas In Vitro , Masculino , Camundongos , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Doses de Radiação , Lesões por Radiação/patologia , Esplenomegalia/patologia , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Células Tumorais Cultivadas
19.
Phys Med ; 42: 127-134, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29173905

RESUMO

The new PET tracer, 18F-flurpiridaz, with high myocardial extraction allows quantitative myocardial blood flow (MBF) estimation from dynamic PET data and tracer kinetic modeling. The goal of this study is to determine the optimal imaging protocols and parameters using a realistic simulation study. The time activity curves (TACs) of different tissue organs from a 30-s infusion time (IT) of 18F-flurpiridaz in a dynamic PET study were extracted from a previous study. The TACs at different time points were incorporated in a series of realistic 3D XCAT phantoms from which the parameters of a 2-compartment model and the 'true' MBF of 18F-flurpiridaz were determined. The compartmental model was used to generate TACs from 7 additional ITs. PET projection data from the XCAT phantoms were generated using Monte Carlo simulation. They were reconstructed using an OS-EM reconstruction algorithm with different update number (N) to obtain dynamic PET images. The blood and myocardial TACs were derived from the dynamic images from which the MBF and %MBF error was estimated. The %MBF error decreases with increasing N of the OS-EM and levels off after ∼42. The 30-s IT gave the smallest %MBF error that decreases from ∼0.57% to ∼19.40%. The MBF for 2-min, 4-min, 8-min and 16-min IT were statistically significant different from the MBF for 30-s IT (P<0.05). Too fast or too slow infusion time gave higher %MBF error. The optimal imaging protocol in dynamic 18F-flurpiridaz PET for accurate quantitative MBF estimation was 30-s IT and N of ∼42 for the OS-EM.


Assuntos
Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Coração/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Tomografia por Emissão de Pósitrons/métodos , Piridazinas , Compostos Radiofarmacêuticos , Algoritmos , Animais , Simulação por Computador , Vasos Coronários/fisiologia , Humanos , Modelos Biológicos , Método de Monte Carlo , Imagem de Perfusão do Miocárdio/instrumentação , Miocárdio/metabolismo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Piridazinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Fluxo Sanguíneo Regional , Sus scrofa , Fatores de Tempo
20.
Artigo em Inglês | MEDLINE | ID: mdl-16298557

RESUMO

An HPLC procedure developed for the rapid and simultaneous determination of purine derivatives (PD) in ruminants' urine was investigated, since the adoption of a single method for the simultaneous detection of PD and creatinine was not carried out due to elution of polar co-extractives and also due to overlapping of the peaks of allantoin and creatinine. The experimental conditions chosen in the present study avoid the presence of chemically competitive compounds and afford a good separation of the peaks of allantoin and creatinine. The recoveries of the standard compounds added to urine samples were 94-104%. This method can be proposed as a possible reference method for the estimation of allantoin, uric acid and creatinine in cattle urine.


Assuntos
Alantoína/urina , Cromatografia Líquida de Alta Pressão/métodos , Creatinina/urina , Ácido Úrico/urina , Animais , Calibragem , Bovinos , Padrões de Referência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA