Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 14(33): 11780-99, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22829118

RESUMO

The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells.

2.
J Am Chem Soc ; 132(47): 16883-92, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21053947

RESUMO

The spatial distribution of reaction products in multilayer polymer solar cells induced by water and oxygen atmospheres was mapped and used to elucidate the degradation patterns and failure mechanisms in an inverted polymer solar cell. The active material comprised a bulk heterojunction formed by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) sandwiched between a layer of zinc oxide and a layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) that acted as, respectively, electron and hole transporting layers between the active material and the two electrodes indium-tin-oxide (ITO) and printed silver. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with isotopic labeling using H(2)(18)O and (18)O(2) enabled detailed information on where and to what extent uptake took place. A comparison was made between the use of a humid (oxygen-free) atmosphere and a dry oxygen atmosphere during testing of devices that were kept in the dark and devices that were subjected to illumination under simulated sunlight. It was found that the reactions taking place at the interface between the active layer and the PEDOT:PSS were the major cause of device failure in the case of these inverted devices, which are compatible with full roll-to-roll (R2R) coating and industrial manufacture. The PEDOT:PSS was found to phase separate, with the PEDOT-rich phase being responsible for most of the interface degradation in oxygen atmospheres. In water atmospheres, little chemically induced degradation was observed, whereas a large partially reversible dependence of the open circuit voltage on the relative humidity was observed. In addition, temporal aspects are discussed in regard to degradation mechanisms. Finally, analytical aspects in regard to storing devices are discussed.

3.
J Am Chem Soc ; 131(45): 16445-53, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19860410

RESUMO

Herein, we present a new paradigm in the engineering of nanostructured hybrids between conjugated polymer and inorganic materials via a chain-growth surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) from particles. Poly(3-hexylthiophene), P3HT, a benchmark material for organic electronics, was selectively grown by SI-KCTP from (nano)particles bearing surface-immobilized Ni catalysts supported by bidentate phosphorus ligands, that resulted in hairy (nano)particles with end-tethered P3HT chains. Densely grafted P3HT chains exhibit strongly altered optical properties compared to the untethered counterparts (red shift and vibronic fine structure in absorption and fluorescence spectra), as a result of efficient planarization and chain-aggregation. These effects are observed in solvents that are normally recognized as good solvents for P3HT (e.g., tetrahydrofurane). We attribute this to strong interchain interactions within densely grafted P3HT chains, which can be tuned by changing the surface curvature (or size) of the supporting particle. The hairy P3HT nanoparticles were successfully applied in bulk heterojunction solar cells.


Assuntos
Níquel/química , Tiofenos/síntese química , Catálise , Nanoestruturas/química , Tamanho da Partícula , Propriedades de Superfície , Tiofenos/química
4.
Nanoscale ; 8(1): 318-26, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26611256

RESUMO

We report the use of roll-to-roll printed silver nanowire networks as front electrodes for fully roll-to-roll processed flexible indium-tin-oxide (ITO) free OPV modules. We prepared devices with two types of back electrodes, a simple PEDOT: PSS back electrode and a PEDOT: PSS back electrode with a printed silver grid in order to simultaneously explore the influence of the back electrode structure on the operational stability of the modules that did not include any UV-protection. We subjected the devices to stability testing under a number of protocols recommended by the international summit on OPV stability (ISOS). We explored accelerated ISOS-D-2, ISOS-D-3, ISOS-L-2, ISOS-L-3, ISOS-O-1 and ISOS-O-2 testing protocols and compared the performance to previous reports employing the same testing protocols on devices with PEDOT: PSS instead of the silver nanowires in the front electrode. We find significantly increased operational stability across all ISOS testing protocols over the course of the study and conclude that replacement of PEDOT: PSS in the front electrode with silver nanowires increase operational stability by up to 1000%. The duration of the tests were in the range of 140-360 days. The comparison of front and back electrode stability in this study shows that the modules with silver nanowire front electrodes together with a composite back electrode comprising PEDOT: PSS and a silver grid present the best operational stability.

5.
Adv Mater ; 24(5): 580-612, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22213056

RESUMO

Organic photovoltaics (OPVs) evolve in an exponential manner in the two key areas of efficiency and stability. The power conversion efficiency (PCE) has in the last decade been increased by almost a factor of ten approaching 10%. A main concern has been the stability that was previously measured in minutes, but can now, in favorable circumstances, exceed many thousands of hours. This astonishing achievement is the subject of this article, which reviews the developments in stability/degradation of OPVs in the last five years. This progress has been gained by several developments, such as inverted device structures of the bulk heterojunction geometry device, which allows for more stable metal electrodes, the choice of more photostable active materials, the introduction of interfacial layers, and roll-to-roll fabrication, which promises fast and cheap production methods while creating its own challenges in terms of stability.


Assuntos
Fontes de Energia Elétrica , Polímeros/química , Desenho de Equipamento , Energia Solar
6.
ACS Appl Mater Interfaces ; 4(3): 1847-53, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22352848

RESUMO

The practical application of organic photovoltaic (OPV) cells requires high throughput printing techniques in order to attain cells with an area large enough to provide useful amounts of power. However, in the laboratory screening of new materials for OPVs, spin-coating is used almost exclusively as a thin-film deposition technique due its convenience. We report on the significant differences between the spin-coating of laboratory solar cells and slot-die coating of a blue-green colored, low bandgap polymer (PGREEN). This is one of the first demonstrations of slot-die-coated polymer solar cells OPVs not utilizing poly(3-hexylthiophene):(6,6)-phenyl-C(61)-butyric acid methyl ester (PCBM) blends as a light absorbing layer. Through synthetic optimization, we show that strict protocols are necessary to yield polymers which achieve consistent photovoltaic behavior. We fabricated spin-coated laboratory scale OPV devices with PGREEN: PCBM blends as active light absorbing layers, and compare performance to slot die-coated individual solar cells, and slot-die-coated solar modules consisting of many cells connected in series. We find that the optimum ratio of polymer to PCBM varies significantly when changing from spin-coating of thinner active layer films to slot-die coating, which requires somewhat thicker films. We also demonstrate the detrimental impacts on power conversion efficiency of high series resistance imparted by large electrodes, illustrating the need for higher conductivity contacts, transparent electrodes, and high mobility active layer materials for large-area solar cell modules.

7.
ACS Appl Mater Interfaces ; 1(1): 102-12, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20355761

RESUMO

Water-induced degradation of polymer photovoltaics based on the active materials poly(3-hexylthiophene) (P3HT) or poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) was studied. The solar cell devices comprised a bulk heterojunction formed by the active material and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in a standard device geometry. The use of H2(18)O in conjunction with time-of-flight secondary ion mass spectrometry enabled mapping of the parts of the device that were induced by water. A comparison was made between the two active materials and between devices that were kept in the dark and devices that had been subjected to illumination under simulated sunlight. Devices that were exposed to ambient humidity were compared to devices exposed to saturated humidity. Finally, a comparison was made between results obtained using H2(18)O and earlier work involving 18O2. Water was found to have behavior similar to but not identical with molecular oxygen.

8.
ACS Appl Mater Interfaces ; 1(12): 2768-77, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20356155

RESUMO

The search for polymer solar cells giving a high open circuit voltage was conducted through a comparative study of four types of bulk-heterojunction solar cells employing different photoactive layers. As electron donors the thermo-cleavable polymer poly-(3-(2-methylhexyloxycarbonyl)dithiophene) (P3MHOCT) and unsubstituted polythiophene (PT) were used, the latter of which results from thermo cleaving the former at 310 degrees C. As reference, P3HT solar cells were built in parallel. As electron acceptors, either PCBM or bis-[60]PCBM were used. In excess of 300 solar cells were produced under as identical conditions as possible, varying only the material combination of the photo active layer. It was observed that on replacing PCBM with bis[60]PCBM, the open circuit voltage on average increased by 100 mV for P3MHOCT and 200 mV for PT solar cells. Open circuit voltages approaching 1 V were observed for the PT:bis[60]PCBM solar cells and a maximum conversion efficiency of 1.3% was obtained for solar cells with P3MHOCT:PCBM as the photoactive material. For the reference solar cells maximum efficiencies of 2.1 and 2.4% were achieved for P3HT:PCBM and P3HT:bis[60]PCBM, respectively. Despite special measures taken in terms of substrate design and device processing, a substantial spread in the photovoltaic properties was generally observed. This spread could not be correlated with the optical properties of the solar cells, the thickness of the photo active layer or the electrode deposition conditions of the aluminum top electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA