Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Basic Microbiol ; 62(3-4): 201-222, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34532865

RESUMO

Bioelectrochemical systems (BESs) are a unique group of wastewater remediating technology that possesses the added advantage of valuable recovery with concomitant wastewater treatment. Moreover, due to the application of robust microbial biocatalysts in BESs, effective removal of emerging contaminants (ECs) can be accomplished in these BESs. Thus, this review emphasizes the recent demonstrations pertaining to the removal of complex organic pollutants of emerging concern present in wastewater through BES. Owing to the recalcitrant nature of these pollutants, they are not effectively removed through conventional wastewater treatment systems and thereby are discharged into the environment without proper treatment. Application of BES in terms of ECs removal and degradation mechanism along with valuables that can be recovered are discussed. Moreover, the factors affecting the performance of BES, like biocatalyst, substrate, salinity, and applied potential are also summarized. In addition, the present review also elucidates the occurrence and toxic nature of ECs as well as future recommendations pertaining to the commercialization of this BES technology for the removal of ECs from wastewater. Therefore, the present review intends to aid the researchers in developing more efficient BESs for the removal of ECs from wastewater.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias
2.
Biodegradation ; 31(4-6): 249-264, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32880776

RESUMO

The inoculum biomass was collected from a pilot-scale (3 m3 process tank) nitritation-anaerobic ammonium oxidation (ANAMMOX) (deammonification moving bed biofilm (DeaMBBR)) reactor demonstrating the highest total nitrogen removal rate (TNRR) of 0.33 kg N m-3 day-1. This biomass was used for inoculating the anodic chamber of a microbial fuel cell (MFC) to investigate the capacity of DeaMBBR biomass to act as an exo-electrogenic consortia. Performance of MFCs inoculated with ANAMMOX-specific consortia collected from DeaMBBR (MFC-ANA) and another MFC-CON inoculated with a septic tank mixed anaerobic consortium as a control was investigated for electrochemical performance and wastewater treatment efficiency. These MFCs were operated for the total duration of 419 days during which regular feed was given and performance was monitored for first 30 cycles and last 30 cycles, with each cycle of 3 day duration. The MFC-ANA continuously generated bio-energy with higher volumetric power density (9.5 W m-3 and 6.0 W m-3) in comparison to MFC-CON (4.9 and 2.9 W m-3) during the first 30 and last 30 cycles of operational period, respectively. MFC-ANA also achieved 84 ± 2% and 80 ± 2% of COD removal efficiency and 89 ± 4% and 73 ± 2% of total nitrogen removal efficiency during first 30 and last 30 cycles of operational period, respectively. The improvement of nitrogen removal and power production in case of MFC-ANA over MFC-CON could be attributed to the ANAMMOX-denitrifiers populations and Trichococcus (14.92%) as denitrifying exo-electrogenic microbes (4.46%), respectively.


Assuntos
Fontes de Energia Bioelétrica , Biodegradação Ambiental , Biomassa , Reatores Biológicos , Desnitrificação , Eletricidade , Características da Família , Nitrogênio , Águas Residuárias
3.
J Environ Manage ; 217: 700-709, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654973

RESUMO

Bioethanol production from lignocellulosic biomass is a promising approach towards finding an alternative for transportation fuels that is driven by the prerequisite to lessen our dependency on fossil fuels, increase energy security and mitigate greenhouse gas emission. Recalcitrance of lignocellulosic biomass is a major hindrance in bioethanol production. Hence, an efficient pretreatment method is necessary for degradation of lignin and providing accessibility of holocellulose for hydrolysis. In an attempt to overcome this bottleneck, laccase mediated delignification of sugarcane tops was studied using central composite design (CCD) based on response surface methodology (RSM). The effect of different process parameters such as temperature, pH, solid loading, enzyme titre and incubation time were evaluated. It was observed that under optimum conditions of pH 7, solid loading of 21% (w/v), enzyme titre of 430.3 IU/mL, temperature of 40 °C and incubation of 6 h, maximum delignification of 79.1% was achieved. Compositional analysis, energy density measurement and water retention capacity of the biomass was also conducted along with GC-MS analysis for identification of low molecular compounds formed during delignification. Structural characterization of the biomass before and after pretreatment process were analysed by Scanning Electron Microscopy (SEM), Fourier-Transform Infra-Red Spectroscopy (FTIR) and X-Ray Diffraction Spectroscopy (XRD) that further substantiated the delignification of sugarcane tops.


Assuntos
Lacase , Saccharum , Biomassa , Hidrólise , Lignina
4.
Environ Sci Pollut Res Int ; 31(42): 54402-54416, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977554

RESUMO

Improving catalytic activity of cathode with noble metal-free catalysts can significantly establish microbial fuel cells (MFCs) as a sustainable and economically affordable technology. This investigation aimed to assess the viability of utilizing tri-metal ferrite (Co0.5Cu0.5 Bi0.1Fe1.9O4) as an oxygen reduction reaction (ORR) catalyst to enhance the performance of cathode in MFCs. Trimetallic ferrite was synthesized using a sol-gel auto-combustion process. Electrochemical evaluations were conducted to assess the efficacy of as-synthesized composite as an ORR catalyst, employing electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This evaluation revealed that the impregnation of bismuth in the Co-Cu-ferrite structure improves the reduction current response and reduces the charge transfer resistance. Further experiments were conducted to test the performance of this catalyst in an MFC. The MFC with tri-metal ferrite catalyst generated a power density of 11.44 W/m3 with 21.4% coulombic efficiency (CE), which was found to be comparable with commercially available 10% Pt/C used as cathode catalyst in MFC (power density of 12.14 W/m3 and CE of 23.1%) and substantially greater than MFC having bare carbon felt cathode without any catalyst (power density of 2.49 W/m3 and CE of 7.39%). This exceptionally inexpensive ORR catalyst has adequate merit to replace commercial costlier platinum-based cathode catalysts for upscaling MFCs.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Compostos Férricos , Oxigênio , Catálise , Compostos Férricos/química , Oxigênio/química , Oxirredução
5.
Sci Rep ; 14(1): 23932, 2024 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-39397039

RESUMO

The presence of refractory micropollutants in natural waters poses significant environmental and health risks. Preferably, advanced oxidation techniques like electro-Fenton (EF) and bio-electro-Fenton (BEF) are used to mitigate micropollutants; nevertheless, their field-scale implementation is limited by prohibitive catalyst cost. As an alternative, waste-iron electrocoagulated algal biomass (A-BC/Fe) was explored as a heterogeneous Fenton catalyst to eliminate dimethyl phthalate (DMP) from wastewater. The Fenton-conducive morphological, chemical, and electrochemical properties of the A-BC/Fe catalyst were revealed by detailed characterisation. In EF treatment, 10 mg/L of DMP was completely degraded within 15 min at pH of 7.0, 50 mM Na2SO4, and cathode potential of - 1.4 V vs. Ag/AgCl. Moreover, the EF system achieved 87.80 ± 2.10% and 96.14 ± 1.10% of DMP removal from secondary and tertiary treated municipal sewage, respectively. The A-BC/Fe catalyst-driven EF process disintegrated DMP into benign non-toxic by-products and showed stable performance over eight batch cycles with only a 1.71% decline in DMP removal efficiency. Further, the A-BC/Fe-catalysed BEF system eliminated 94.81 ± 1.90% of DMP in 4 h while achieving a maximum power density of 124.03 ± 5.64 mW/m2. This investigation underscores the potential of repurposing electrocoagulated algal biomass as a sustainable heterogenous catalyst for micropollutant remediation.


Assuntos
Biomassa , Ferro , Ácidos Ftálicos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Ferro/química , Catálise , Ácidos Ftálicos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Peróxido de Hidrogênio/química , Técnicas Eletroquímicas , Oxirredução , Eletrocoagulação/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-39210224

RESUMO

The application of hybrid advanced oxidation processes (AOPs) is an efficacious way to remediate emerging contaminants from wastewater. In the present research work, a hybrid electrochemical oxidation and ultraviolet light-based persulfate activation processes (EO-UV/PS) were used to efficiently degrade sodium dodecyl sulfate (SDS) surfactant from synthetic and municipal wastewater. By operating the EO-UV/PS at optimum operating conditions at pH of 7.0, NaCl of 0.02 M, current density of 6.4 mA/cm2, persulfate dose of 2.5 mM, and operating period of 180 min, about 94.5 ± 2.8% of SDS (20 mg/L) removal was achieved from synthetic wastewater. The abetment of SDS in both EO and UV/PS obeyed pseudo-first-order kinetics with a rate constant of 0.012 and 0.019 min-1, respectively. Moreover, the economic analysis revealed 0.23 $ m-3 order-1 as the operating cost for degrading SDS in EO-UV/PS. The degradation pathway experimentation suggested the generation of lauric acid by-product during SDS abatement. Besides, nearly 89.3 ± 2.9% of SDS and 58.7 ± 2.4% of total organic carbon reduction was also achieved from real municipal wastewater. Phytotoxicity test on Vigna radiata affirms the non-toxic nature of the EO-UV/PS effluent.

7.
Environ Sci Pollut Res Int ; 30(36): 85071-85086, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227630

RESUMO

Ethylene glycol or 1,2-ethanediol (EG) is a persistent and toxic substance in the environment and extensively applied in petrochemical, surfactants, antifreeze, asphalt emulsion paints, cosmetics, plastics, and polyester fiber industries. Degradation of EG by using ultraviolet (UV) activated hydrogen peroxide (H2O2) and persulfate (PS) or persulfate anion (S2O82-) based advanced oxidation processes (AOPs) were explored. The result obtained demonstrate that UV/PS (85.7 ± 2.5%) has exhibited improved degradation efficiency of EG as compared to UV/H2O2 (40.4 ± 3.2%) at optimal operating conditions of 24 mM of EG concentration, 5 mM of H2O2, 5 mM of PS, 1.02 mW cm-2 of UV fluence, and pH of 7.0. Impacts of operating factors, including initial EG concentration, oxidant dosage, reaction duration, and the impact of different water quality parameters, were also explored in this present investigation. The degradation of EG in Milli-Q® water followed pseudo - first order reaction kinetics in both methods having a rate constant of about 0.070 min-1 and 0.243 min-1 for UV/H2O2 and UV/PS, respectively, at optimum operating conditions. Additionally, an economic assessment was also conducted under optimal experimental conditions, and the electrical energy per order and total operational cost for treating per m3 of EG-laden wastewater was observed to be about 0.042 kWh m-3 order-1 and 0.221 $ m-3 order-1, respectively, for UV/PS, which was slightly lower than UV/H2O2 (0.146 kWh m-3 order-1; 0.233 $ m-3 order-1). The potential degradation mechanisms were proposed based on intermediate by-products detected by Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Moreover, real petrochemical effluent containing EG was also treated by UV/PS, demonstrating 74.7 ± 3.8% of EG and 40.7 ± 2.6% of total organic carbon removal at 5 mM of PS and 1.02 mW cm-2 of UV fluence. A toxicity tests on Escherichia coli (E. coli) and Vigna radiata (green gram) confirmed non-toxic nature of UV/PS treated water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Etilenoglicol , Peróxido de Hidrogênio/química , Cinética , Escherichia coli , Oxirredução , Raios Ultravioleta , Purificação da Água/métodos
8.
Environ Sci Pollut Res Int ; 30(10): 25427-25451, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35094282

RESUMO

The discharge of emerging pollutants, such as beta-blockers (BB), has been recognized as one of the major threats to the environment due to the ecotoxicity associated with these emerging pollutants. The BB are prescribed to treat high blood pressure and cardiovascular diseases; however, even at lower concentration, these pollutants can pose eco-toxic impacts towards aquatic organisms. Additionally, owing to their recalcitrant nature, BB are not effectively removed through conventional technologies, such as activated sludge process, trickling filter and moving bed bioreactor; thus, it is essential to understand the degradation mechanism of BB in established as well as embryonic technologies, like adsorption, electro-oxidation, Fenton process, ultraviolet-based advance oxidation process, ozonation, membrane systems, wetlands and algal treatment. In this regard, this review articulates the recalcitrant nature of BB and their associated removal technologies. Moreover, the major advantages and limitations of these BB removal technologies along with the recent advancements with regard to the application of innovative materials and strategies have also been elucidated. Therefore, the present review intends to aid the researchers in improving the BB removal efficiency of these technologies, thus alleviating the problem of the release of BB into the environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Esgotos
9.
Artigo em Inglês | MEDLINE | ID: mdl-37479925

RESUMO

The widespread application of surfactants and their subsequent discharge in the receiving water bodies is a very common issue in developing countries. In the present investigation, a composite of graphitic carbon nitride (GCN) and TiO2 was used as a photo-electro-catalyst in a microbial fuel cell (MFC)-based hybrid system for bio-electricity production and simultaneous pollutant removal (organic matter and sodium dodecyl sulphate, SDS). The GCN: TiO2 composite with a ratio of 70:30 (by wt. %) revealed a better electrochemical response; thus, it was used as a photo-electro-catalyst in MFC. Additionally, the photochemical characterization indicated a decrease in the band gap and charge recombination of GCN-TiO2 composite compared to standalone TiO2, which indicated a conducive effect of GCN addition. Further, on the actual use as a photo-electro-catalyst, the GCN-TiO2 catalysed MFC attained 58.2 ± 9.6% and 86.5 ± 7.1% of COD and SDS removal; while simultaneously harvesting a maximum power density of 1.07 W m-3, which was higher than standalone TiO2-catalysed MFC. The follow-up treatment in the charcoal bio-filter and photo-cathodic chamber of the hybrid system further improved the overall COD and SDS removal efficiency to 92.1 ± 2.7 and 95.6 ± 1.5%, respectively. The electro-catalytic performance of the GCN-TiO2 can be attributed to the presence of nitrogen-active species in the composite. The results of this investigation demonstrated a potential MFC-based hybrid system for the simultaneous secondary and tertiary treatment of municipal wastewater. Consequently, the outcome of this investigation indicates an innovative research direction in the field of photo-electro-catalyst, which can fit into the role of a photo-catalyst as well as an electro-catalyst.

10.
Environ Sci Pollut Res Int ; 29(41): 61783-61802, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34231137

RESUMO

Petrochemical industry is one of the major and rapidly growing industry that generates a variety of toxic and recalcitrant organic pollutants as by-products, which are not only harmful to the aquatic animals but also affects human health. The majority of the components of petrochemical wastewater (PW) are carcinogenic, genotoxic and phytotoxic in nature; hence, this complex wastewater generated from different petrochemical processes should be efficiently treated prior to its disposal in natural water bodies. The established technologies like advanced oxidation, membrane bioreactor, electrocoagulation and activated sludge process employed for the treatment of PW are highly energy intensive and incurs high capital and operation cost. Moreover, these technologies are not effective in completely eliminating petroleum hydrocarbons present in PW. Thus, to reduce the energy requirement and also to transform the chemical energy trapped in these organic matters present in this wastewater into bioelectricity and other value-added products, microbial electrochemical technologies (METs) can be efficaciously used, which would also compensate the treatment cost by transforming these pollutants into bioenergy and valuables. In this regard, this review elucidates the feasibility and application of different METs as an appropriate alternative for the treatment of PW. Furthermore, the numerous bottlenecks towards the real-life application and commercialization of pioneering METs have also been articulated.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes Químicos da Água , Reatores Biológicos , Humanos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 797: 149133, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311377

RESUMO

Lowered air supply and organic carbon need are the key factors to reduce wastewater treatment costs and thereby, avoid eutrophication. Denitrifying PO43-- removal (DPR) process using nitrate instead of oxygen for PO43- uptake was started up in the sequencing batch reactor (SBR) at a nitrate dosing rate of 20-25 mg N L-1 d-1. Operation with a real municipal wastewater supplied with CH3COONa, K2HPO4 and KNO3 succeeded in the cultivation of biomass containing denitrifying polyphosphate accumulating organisms (DPAOs). The durations of SBR process anaerobic/anoxic/oxic cycles were 1.5 h, 3.5 h and 1 h, respectively. SBR operation resulted in a maximum PO43--P uptake of 17 mg PO43--P g-1 MLSS. The highest TN and PO43- removal efficiencies were observed during the first half of reactor operation at 77 (±10) % and 71 (±5) %, respectively. An average COD removal rate of 172 (±98) mg g-1 MLSS and a high average removal efficiency of 89 (±4) % were achieved. Nitrite effect with/without nitrate as DPR electron acceptor was investigated in batch-scale to show possibilities to use high nitrite and nitrate contents simultaneously as electron acceptors for the anoxic phosphate uptake. Nitrate attenuation against nitrite toxicity can be economically justified in full-scale treatment applications in which wastewater has a high nitrogen content. Nitrate attenuated nitrite toxicity (caused by nitrite content at 5-100 mg NO2--N L-1) when using supplemental additions of nitrate (at concentrations of 45-200 mg NO3--N L-1) in batch tests. Illumina sequencing emphasized that during biomass adaption microbial community changed by lowered aerobic cycle length and by lowered nitrate dosing towards representation of key DPAO/PAO- organisms, such as Candidatus Accumulibacter, Xanthomonadaceae, Comomonadaceae, Saprospiraceae and Rhodocyclaceae. This study showed that DPAO biomass adaption to nitrate maintained an efficient COD, nitrogen and phosphorus removal and the biomass can be applied for treatment of wastewater containing high nitrite and nitrate content.


Assuntos
Nitratos , Nitritos , Reatores Biológicos , Desnitrificação , Nitrogênio , Fósforo , Polifosfatos , Esgotos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA