Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Neurosci Conscious ; 2024(1): niae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545608

RESUMO

The role of the parietal cortex in perceptual awareness and in resolving perceptual ambiguity is unsettled. Early influential transcranial magnetic stimulation studies have revealed differences in conscious perception following parietal stimulation, fuelling the notion that parietal cortex causally contributes to resolving perceptual ambiguity. However, central to this conclusion is the reliability of the method employed. Several prior studies have revealed opposing effects, such as shortening, lengthening, or no effect on multistable perceptual transitions following parietal stimulation. Here we addressed the reliability of continuous theta-burst stimulation (cTBS) on parietal cortex on the perception of bistable stimuli. We conducted three cTBS experiments that were matched to prior experiments in terms of stimuli, stimulation protocol, and target site, and used a higher number of participants. None of our cTBS experiments replicated prior cTBS results. The only experiment using individual functional localizers led to weak effects, while the two others led to null results. Individual variability of motor cortex cTBS did not predict parietal cTBS effects. In view of recent reports of highly variable cTBS effects over motor cortex, our results suggest that cTBS is particularly unreliable in modulating bistable perception when applied over parietal cortex.

3.
Netw Neurosci ; 6(4): 1205-1218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38800466

RESUMO

Recently, neuroscience has seen a shift from localist approaches to network-wide investigations of brain function. Neurophysiological signals across different spatial and temporal scales provide insight into neural communication. However, additional methodological considerations arise when investigating network-wide brain dynamics rather than local effects. Specifically, larger amounts of data, investigated across a higher dimensional space, are necessary. Here, we present FiNN (Find Neurophysiological Networks), a novel toolbox for the analysis of neurophysiological data with a focus on functional and effective connectivity. FiNN provides a wide range of data processing methods and statistical and visualization tools to facilitate inspection of connectivity estimates and the resulting metrics of brain dynamics. The Python toolbox and its documentation are freely available as Supporting Information. We evaluated FiNN against a number of established frameworks on both a conceptual and an implementation level. We found FiNN to require much less processing time and memory than other toolboxes. In addition, FiNN adheres to a design philosophy of easy access and modifiability, while providing efficient data processing implementations. Since the investigation of network-level neural dynamics is experiencing increasing interest, we place FiNN at the disposal of the neuroscientific community as open-source software.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA