Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 13(12): e0208825, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532234

RESUMO

The emissions of BVOCs from oilseed rape (Brassica napus), both when the plant is exposed to clean air and when it is fumigated with ozone at environmentally-relevant mixing ratios (ca. 135 ppbv), were measured under controlled laboratory conditions. Emissions of BVOCs were recorded from combined leaf and root chambers using a recently developed Selective Reagent Ionisation-Time of Flight-Mass Spectrometer (SRI-ToF-MS) enabling BVOC detection with high time and mass resolution, together with the ability to identify certain molecular functionality. Emissions of BVOCs from below-ground were found to be dominated by sulfur compounds including methanethiol, dimethyl disulfide and dimethyl sulfide, and these emissions did not change following fumigation of the plant with ozone. Emissions from above-ground plant organs exposed to clean air were dominated by methanol, monoterpenes, 4-oxopentanal and methanethiol. Ozone fumigation of the plants caused a rapid decrease in monoterpene and sesquiterpene concentrations in the leaf chamber and increased concentrations of ca. 20 oxygenated species, almost doubling the total carbon lost by the plant leaves as volatiles. The drop in sesquiterpenes concentrations was attributed to ozonolysis occurring to a major extent on the leaf surface. The drop in monoterpene concentrations was attributed to gas phase reactions with OH radicals deriving from ozonolysis reactions. As plant-emitted terpenoids have been shown to play a role in plant-plant and plant-insect signalling, the rapid loss of these species in the air surrounding the plants during photochemical pollution episodes may have a significant impact on plant-plant and plant-insect communications.


Assuntos
Brassica napus/metabolismo , Fumigação , Ozônio/farmacologia , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Brassica napus/parasitologia , Componentes Aéreos da Planta/parasitologia , Raízes de Plantas/parasitologia
2.
Tree Physiol ; 33(6): 562-78, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23532135

RESUMO

In the present study, biogenic volatile organic compound (BVOC) emissions and photosynthetic gas exchange of salt-sensitive (Populus x canescens (Aiton) Sm.) and salt-tolerant (Populus euphratica Oliv.) isoprene-emitting and non-isoprene-emitting poplars were examined under controlled high-salinity and high-temperature and -light episode ('sunfleck') treatments. Combined treatment with salt and sunflecks led to an increased isoprene emission capacity in both poplar species, although the photosynthetic performance of P. × canescens was reduced. Indeed, different allocations of isoprene precursors between the cytosol and the chloroplast in the two species were uncovered by means of (13)CO2 labeling. Populus × canescens leaves, moreover, increased their use of 'alternative' carbon (C) sources in comparison with recently fixed C for isoprene biosynthesis under salinity. Our studies show, however, that isoprene itself does not have a function in poplar survival under salt stress: the non-isoprene-emitting leaves showed only a slightly decreased photosynthetic performance compared with wild type under salt treatment. Lipid composition analysis revealed differences in the double bond index between the isoprene-emitting and non-isoprene-emitting poplars. Four clear metabolomics patterns were recognized, reflecting systemic changes in flavonoids, sterols and C fixation metabolites due to the lack/presence of isoprene and the absence/presence of salt stress. The studies were complemented by long-term temperature stress experiments, which revealed the thermotolerance role of isoprene as the non-isoprene-emitting leaves collapsed under high temperature, releasing a burst of BVOCs. Engineered plants with a low isoprene emission potential might therefore not be capable of resisting high-temperature episodes.


Assuntos
Carbono/metabolismo , Hemiterpenos/genética , Temperatura Alta , Populus/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Luz Solar , Butadienos/metabolismo , Dióxido de Carbono/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Hemiterpenos/biossíntese , Hemiterpenos/metabolismo , Metaboloma/genética , Pentanos/metabolismo , Fotossíntese/genética , Fitosteróis/genética , Fitosteróis/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Sais/metabolismo , Sais/farmacologia , Cloreto de Sódio/efeitos adversos , Cloreto de Sódio/metabolismo , Especificidade da Espécie , Árvores/genética , Árvores/metabolismo , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA