Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glycoconj J ; 40(3): 343-354, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084126

RESUMO

A subclass of the sialic acid family consists of intramolecular lactones that may function as key indicators of physiological and pathological states. However, the existence of these compounds in free form is highly improbable, since they are unlikely to exist in an aqueous solution due to their lability. Current analytical method used to detect them in biological fluids has not recognized their reactivity in solution and is prone to misidentification. However, recent advances in synthetic methods for 1,7-lactones have allowed the preparation of these sialic acid derivatives as authentic reference standards. We report here the development of a new HPLC-MS method for the simultaneous detection of the 1,7-lactone of N-acetylneuraminic acid, its γ-lactone derivative, and N-acetylneuraminic acid that overcomes the limitations of the previous analytical procedure for their identification.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Ácidos Siálicos/análise , Lactonas , Cromatografia Líquida de Alta Pressão
2.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068978

RESUMO

Brugada Syndrome (BrS) is a genetic heart condition linked to sudden cardiac death. Though the SCN5A gene is primarily associated with BrS, there is a lack of comprehensive studies exploring the connection between SCN5A mutation locations and the clinical presentations of the syndrome. This study aimed to address this gap and gain further understanding of the syndrome. The investigation classified 36 high-risk BrS patients based on SCN5A mutations within the transmembrane/structured (TD) and intra-domain loops (IDLs) lacking a 3D structure. We characterized the intrinsically disordered regions (IDRs) abundant in IDLs, using bioinformatics tools to predict IDRs and post-translational modifications (PTMs) in NaV1.5. Interestingly, it was found that current predictive tools often underestimate the impacts of mutations in IDLs and disordered regions. Moreover, patients with SCN5A mutations confined to IDL regions-previously deemed 'benign'-displayed clinical symptoms similar to those carrying 'damaging' variants. Our research illuminates the difficulty in stratifying patients based on SCN5A mutation locations, emphasizing the vital role of IDLs in the NaV1.5 channel's functioning and protein interactions. We advocate for caution when using predictive tools for mutation evaluation in these regions and call for the development of improved strategies in accurately assessing BrS risk.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/diagnóstico , Mutação , Fenótipo , Morte Súbita Cardíaca , Coração , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894777

RESUMO

Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the SCN5A gene, which encodes for the Nav1.5 sodium channel. Our study focused on three novel SCN5A mutations (p.A344S, p.N347K, and p.D349N) found in unrelated BrS families. Using patch clamp experiments, we found that these mutations disrupted sodium currents: p.A344S reduced current density, while p.N347K and p.D349N completely abolished it, leading to altered voltage dependence and inactivation kinetics when co-expressed with normal channels. We also explored the effects of mexiletine treatment, which can modulate ion channel function. Interestingly, the p.N347K and p.D349N mutations responded well to the treatment, rescuing the current density, while p.A344S showed a limited response. Structural analysis revealed these mutations were positioned in key regions of the channel, impacting its stability and function. This research deepens our understanding of BrS by uncovering the complex relationship between genetic mutations, ion channel behavior, and potential therapeutic interventions.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas , Mutação
4.
Eur Heart J ; 42(11): 1082-1090, 2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33221895

RESUMO

AIMS: Brugada syndrome (BrS) is associated with an increased risk of sudden cardiac death due to ventricular tachycardia/fibrillation (VT/VF) in young, otherwise healthy individuals. Despite SCN5A being the most commonly known mutated gene to date, the genotype-phenotype relationship is poorly understood and remains uncertain. This study aimed to elucidate the genotype-phenotype correlation in BrS. METHODS AND RESULTS: Brugada syndrome probands deemed at high risk of future arrhythmic events underwent genetic testing and phenotype characterization by the means of epicardial arrhythmogenic substrate (AS) mapping, and were divided into two groups according to the presence or absence of SCN5A mutation. Two-hundred probands (160 males, 80%; mean age 42.6 ± 12.2 years) were included in this study. Patients harbouring SCN5A mutations exhibited a spontaneous type 1 pattern and experienced aborted cardiac arrest or spontaneous VT/VF more frequently than the other subjects. SCN5A-positive patients exhibited a larger epicardial AS area, more prolonged electrograms and more frequently observed non-invasive late potentials. The presence of an SCN5A mutation explained >26% of the variation in the epicardial AS area and was the strongest predictor of a large epicardial area. CONCLUSION: In BrS, the genetic background is the main determinant for the extent of the electrophysiological abnormalities. SCN5A mutation carriers exhibit more pronounced epicardial electrical abnormalities and a more aggressive clinical presentation. These results contribute to the understanding of the genetic determinants of the BrS phenotypic expression and provide possible explanations for the varying degrees of disease expression.


Assuntos
Síndrome de Brugada , Taquicardia Ventricular , Adulto , Síndrome de Brugada/genética , Eletrocardiografia , Mapeamento Epicárdico , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo , Taquicardia Ventricular/genética , Fibrilação Ventricular
5.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682772

RESUMO

Coronary reperfusion strategies are life-saving approaches to restore blood flow to cardiac tissue after acute myocardial infarction (AMI). However, the sudden restoration of normal blood flow leads to ischemia and reperfusion injury (IRI), which results in cardiomyoblast death, irreversible tissue degeneration, and heart failure. The molecular mechanism of IRI is not fully understood, and there are no effective cardioprotective strategies to prevent it. In this study, we show that activation of sialidase-3, a glycohydrolytic enzyme that cleaves sialic acid residues from glycoconjugates, is cardioprotective by triggering RISK pro-survival signaling pathways. We found that overexpression of Neu3 significantly increased cardiomyoblast resistance to IRI through activation of HIF-1α and Akt/Erk signaling pathways. This raises the possibility of using Sialidase-3 activation as a cardioprotective reperfusion strategy after myocardial infarction.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Coração , Humanos , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Neuraminidase/metabolismo , Transdução de Sinais
6.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806119

RESUMO

Sarcopenia, an age-related decline in muscle mass and strength, is associated with metabolic disease and increased risk of cardiovascular morbidity and mortality. It is associated with decreased tissue vascularization and muscle atrophy. In this work, we investigated the role of the hypoxia inducible factor HIF-1α in sarcopenia. To this end, we obtained skeletal muscle biopsies from elderly sarcopenic patients and compared them with those from young individuals. We found a decrease in the expression of HIF-1α and its target genes in sarcopenia, as well as of PAX7, the major stem cell marker of satellite cells, whereas the atrophy marker MURF1 was increased. We also isolated satellite cells from muscle biopsies and cultured them in vitro. We found that a pharmacological activation of HIF-1α and its target genes caused a reduction in skeletal muscle atrophy and activation of PAX7 gene expression. In conclusion, in this work we found that HIF-1α plays a role in sarcopenia and is involved in satellite cell homeostasis. These results support further studies to test whether pharmacological reactivation of HIF-1α could prevent and counteract sarcopenia.


Assuntos
Sarcopenia , Idoso , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Mioblastos , Sarcopenia/metabolismo , Células-Tronco
7.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361941

RESUMO

Brugada Syndrome (BrS) is an inherited arrhythmogenic disorder with an increased risk of sudden cardiac death. Recent evidence suggests that BrS should be considered as an oligogenic or polygenic condition. Mutations in genes associated with BrS are found in about one-third of patients and they mainly disrupt the cardiac sodium channel NaV1.5, which is considered the main cause of the disease. However, voltage-gated channel's activity could be impacted by post-translational modifications such as sialylation, but their role in BrS remains unknown. Thus, we analyzed high risk BrS patients (n = 42) and healthy controls (n = 42) to assess an involvement of sialylation in BrS. Significant alterations in gene expression and protein sialylation were detected in Peripheral Blood Mononuclear Cells (PBMCs) from BrS patients. These changes were significantly associated with the phenotypic expression of the disease, as the size of the arrhythmogenic substrate and the duration of epicardial electrical abnormalities. Moreover, protein desialylation caused a reduction in the sodium current in an in vitro NaV1.5-overexpressing model. Dysregulation of the sialylation machinery provides definitive evidence that BrS affects extracardiac tissues, suggesting an underlying cause of the disease. Moreover, detection of these changes at the systemic level and their correlation with the clinical phenotype hint at the existence of a biomarker signature for BrS.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/diagnóstico , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Leucócitos Mononucleares/metabolismo , Fenótipo , Mutação , Eletrocardiografia
8.
J Cell Physiol ; 236(7): 4857-4873, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33432663

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally and the number of cardiovascular patients, which is estimated to be over 30 million in 2018, represent a challenging issue for the healthcare systems worldwide. Therefore, the identification of novel molecular targets to develop new treatments is an ongoing challenge for the scientific community. In this context, sphingolipids (SLs) have been progressively recognized as potent bioactive compounds that play crucial roles in the modulation of several key biological processes, such as proliferation, differentiation, and apoptosis. Furthermore, SLs involvement in cardiac physiology and pathophysiology attracted much attention, since these molecules could be crucial in the development of CVDs. Among SLs, ceramide and sphingosine-1-phosphate (S1P) represent the most studied bioactive lipid mediators, which are characterized by opposing activities in the regulation of the fate of cardiac cells. In particular, maintaining the balance of the so-called ceramide/S1P rheostat emerged as an important novel therapeutical target to counteract CVDs. Thus, this review aims at critically summarizing the current knowledge about the antithetic roles of ceramide and S1P in cardiomyocytes dysfunctions, highlighting how the modulation of their metabolism through specific molecules, such as myriocin and FTY720, could represent a novel and interesting therapeutic approach to improve the management of CVDs.


Assuntos
Ceramidas/metabolismo , Transtornos Cerebrovasculares/patologia , Lisofosfolipídeos/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Idoso , Animais , Transtornos Cerebrovasculares/epidemiologia , Transtornos Cerebrovasculares/mortalidade , Doença das Coronárias/patologia , Humanos , Camundongos , Doença Arterial Periférica/patologia , Embolia Pulmonar/patologia , Cardiopatia Reumática/patologia , Esfingosina/metabolismo , Trombose Venosa/patologia
9.
Biochem J ; 477(17): 3401-3415, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32869836

RESUMO

Cardiac fibrosis is a key physiological response to cardiac tissue injury to protect the heart from wall rupture. However, its progression increases heart stiffness, eventually causing a decrease in heart contractility. Unfortunately, to date, no efficient antifibrotic therapies are available to the clinic. This is primarily due to the complexity of the process, which involves several cell types and signaling pathways. For instance, the transforming growth factor beta (TGF-ß) signaling pathway has been recognized to be vital for myofibroblasts activation and fibrosis progression. In this context, complex sphingolipids, such as ganglioside GM3, have been shown to be directly involved in TGF-ß receptor 1 (TGF-R1) activation. In this work, we report that an induced up-regulation of sialidase Neu3, a glycohydrolytic enzyme involved in ganglioside cell homeostasis, can significantly reduce cardiac fibrosis in primary cultures of human cardiac fibroblasts by inhibiting the TGF-ß signaling pathway, ultimately decreasing collagen I deposition. These results support the notion that modulating ganglioside GM3 cell content could represent a novel therapeutic approach for cardiac fibrosis, warranting for further investigations.


Assuntos
Fibroblastos/metabolismo , Gangliosídeo G(M3)/metabolismo , Regulação Enzimológica da Expressão Gênica , Miocárdio/metabolismo , Neuraminidase/biossíntese , Regulação para Cima , Fibroblastos/patologia , Fibrose , Humanos , Miocárdio/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
10.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445410

RESUMO

Dilated cardiomyopathy (DCM) is the leading indication for heart transplantation. TTN gene truncating mutations account for about 25% of familial DCM cases and for 18% of sporadic DCM cases. The clinical relevance of specific variants in TTN has been difficult to determine because of the sheer size of the protein for which TTN encodes, as well as existing extensive genetic variation. Clinicians should communicate novel clinically-relevant variants and genotype-phenotype associations, so that animal studies evaluating the molecular mechanisms are always conducted with a focus on clinical significance. In the present study, we report for the first time the novel truncating heterozygous variant NM_001256850.1:c.72777_72783del (p.Phe24259Leufs*51) in the TTN gene and its association with DCM in a family with sudden death. This variant occurs in the A-band region of the sarcomere, in a known mutational hotspot of the gene. Truncating titin variants that occur in this region are the most common cause of DCM and have been rarely reported in asymptomatic individuals, differently from other pathogenic TTN gene variants. Further studies are warranted to better understand this particular clinically-relevant variant.


Assuntos
Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/genética , Conectina/genética , Morte Súbita Cardíaca/etiologia , Mutação da Fase de Leitura , Biomarcadores , Cardiomiopatia Dilatada/diagnóstico , Análise Mutacional de DNA , Diagnóstico por Imagem , Eletrocardiografia , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Testes de Função Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade
11.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946750

RESUMO

Genetic testing in Brugada syndrome (BrS) is still not considered to be useful for clinical management of patients in the majority of cases, due to the current lack of understanding about the effect of specific variants. Additionally, family history of sudden death is generally not considered useful for arrhythmic risk stratification. We sought to demonstrate the usefulness of genetic testing and family history in diagnosis and risk stratification. The family history was collected for a proband who presented with a personal history of aborted cardiac arrest and in whom a novel variant in the SCN5A gene was found. Living family members underwent ajmaline testing, electrophysiological study, and genetic testing to determine genotype-phenotype segregation, if any. Patch-clamp experiments on transfected human embryonic kidney 293 cells enabled the functional characterization of the SCN5A novel variant in vitro. In this study, we provide crucial human data on the novel heterozygous variant NM_198056.2:c.5000T>A (p.Val1667Asp) in the SCN5A gene, and demonstrate its segregation with a severe form of BrS and multiple sudden deaths. Functional data revealed a loss of function of the protein affected by the variant. These results provide the first disease association with this variant and demonstrate the usefulness of genetic testing for diagnosis and risk stratification in certain patients. This study also demonstrates the usefulness of collecting the family history, which can assist in understanding the severity of the disease in certain situations and confirm the importance of the functional studies to distinguish between pathogenic mutations and harmless genetic variants.


Assuntos
Síndrome de Brugada/genética , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adolescente , Adulto , Idoso , Ajmalina/farmacologia , Substituição de Aminoácidos , Síndrome de Brugada/complicações , Síndrome de Brugada/metabolismo , Morte Súbita Cardíaca/etiologia , Eletrocardiografia , Feminino , Testes Genéticos , Células HEK293 , Heterozigoto , Humanos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Linhagem , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Bioorg Med Chem ; 28(14): 115563, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32616179

RESUMO

The optimization of the synthetic protocol to obtain the 3,4-unsaturated sialic acid derivatives, through the fine-tuning of both the Ferrier glycosylation conditions and the subsequent hydrolysis work-up, is herein reported. The accomplishment of the desired ß-anomers and some selected α-ones, in pure form, led us to evaluate their specific inhibitory activity towards NDV-HN and human sialidase NEU3. Importantly, the resulting data allowed the identification, for the first time, of three active 3,4-unsaturated sialic acid analogs, showing IC50 values against NDV-HN in the micromolar range.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hemaglutininas/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Vírus da Doença de Newcastle/efeitos dos fármacos , Ácidos Siálicos/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Hemaglutininas/metabolismo , Humanos , Estrutura Molecular , Neuraminidase/metabolismo , Vírus da Doença de Newcastle/enzimologia , Ácidos Siálicos/síntese química , Ácidos Siálicos/química , Relação Estrutura-Atividade
13.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824506

RESUMO

Brugada syndrome (BrS) is diagnosed by the presence of an elevated ST-segment and can result in sudden cardiac death. The most commonly found mutated gene is SCN5A, which some argue is the only gene that has been definitively confirmed to cause BrS, while the potential causative effect of other genes is still under debate. While the issue of BrS genetics is currently a hot topic, current knowledge is not able to result in molecular confirmation of over half of BrS cases. Therefore, it is difficult to develop research models with wide potential. Instead, the clinical genetics first need to be better understood. In this study, we provide crucial human data on the novel heterozygous variant NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene, and demonstrate its segregation with BrS, suggesting a pathogenic effect. These results provide the first disease association with this variant and are crucial clinical data to communicate to basic scientists, who could perform functional studies to better understand the molecular effects of this clinically-relevant variant in BrS.


Assuntos
Síndrome de Brugada/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Idoso , Síndrome de Brugada/diagnóstico , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
14.
Europace ; 21(10): 1550-1558, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31292628

RESUMO

AIMS: The Brugada syndrome (BrS) is an inherited disease associated with an increased risk of sudden cardiac death. Often, the genetic cause remains undetected. Perhaps due at least in part because the NaV1.8 protein is expressed more in both the central and peripheral nervous systems than in the heart, the SCN10A gene is not included in diagnostic arrhythmia/sudden death panels in the vast majority of cardiogenetics centres. METHODS AND RESULTS: Clinical characteristics were assessed in patients harboring either SCN5A or novel SCN10A variants. Genetic testing was performed using Next Generation Sequencing on genomic DNA. Clinical characteristics, including the arrhythmogenic substrate, in BrS patients harboring novel SCN10A variants and SCN5A variants are comparable. Clinical characteristics, including gender, age, personal history of cardiac arrest/syncope, spontaneous BrS electrocardiogram pattern, family history of sudden death, and arrhythmic substrate are not significantly different between probands harboring SCN10A or SCN5A variants. CONCLUSION: Future studies are warranted to further characterize the role of these specific SCN10A variants.


Assuntos
Síndrome de Brugada/genética , DNA/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Adolescente , Adulto , Idoso , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/metabolismo , Análise Mutacional de DNA , Eletrocardiografia , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Adulto Jovem
15.
Int J Mol Sci ; 20(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698696

RESUMO

Brugada syndrome (BrS) is marked by coved ST-segment elevation and increased risk of sudden cardiac death. The genetics of this syndrome are elusive in over half of the cases. Variants in the SCN5A gene are the single most common known genetic unifier, accounting for about a third of cases. Research models, such as animal models and cell lines, are limited. In the present study, we report the novel NM_198056.2:c.1111C>T (p.Gln371*) heterozygous variant in the SCN5A gene, as well as its segregation with BrS in a large family. The results herein suggest a pathogenic effect of this variant. Functional studies are certainly warranted to characterize the molecular effects of this variant.


Assuntos
Síndrome de Brugada/genética , Códon sem Sentido/genética , Estudos de Associação Genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Sequência de Bases , Síndrome de Brugada/diagnóstico por imagem , Simulação por Computador , Família , Feminino , Heterozigoto , Humanos , Masculino , Linhagem
16.
Int J Mol Sci ; 20(19)2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590245

RESUMO

Brugada syndrome (BrS) is marked by an elevated ST-segment elevation and increased risk of sudden cardiac death. Variants in the SCN5A gene are considered to be molecular confirmation of the syndrome in about one third of cases, while the genetics remain a mystery in about half of the cases, with the remaining cases being attributed to variants in any of a number of genes. Before research models can be developed, it is imperative to understand the genetics in patients. Even data from humans is complicated, since variants in the most common gene in BrS, SCN5A, are associated with a number of pathologies, or could even be considered benign, depending on the variant. Here, we provide crucial human data on a novel NM_198056.2:c.2091G>A (p.Trp697X) point-nonsense heterozygous variant in the SCN5A gene, as well as its segregation with BrS. The results herein suggest a pathogenic effect of this variant. These results could be used as a stepping stone for functional studies to better understand the molecular effects of this variant in BrS.


Assuntos
Síndrome de Brugada/genética , Códon sem Sentido , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Síndrome de Brugada/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
17.
FASEB J ; 31(5): 2146-2156, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188178

RESUMO

Regeneration of skeletal muscle is a complex process that requires the activation of quiescent adult stem cells, called satellite cells, which are resident in hypoxic niches in the tissue. Hypoxia has been recognized as a key factor to maintain stem cells in an undifferentiated state. Herein we report that hypoxia plays a fundamental role also in activating myogenesis. In particular, we found that the activation of the hypoxia-inducible factor (HIF)-1α under hypoxia, in murine skeletal myoblasts, leads to activation of MyoD through the noncanonical Wnt/ß-catenin pathway. Moreover, chemical inhibition of HIF-1α activity significantly reduces differentiation, thus confirming its crucial role in the process. Furthermore, hypoxia-preconditioned myoblasts, once induced to differentiate under normoxic conditions, tend to form hypertrophic myotubes. These results support the notion that hypoxia plays a pivotal role in activating the regeneration process by directly inducing myogenesis through HIF-1α. Although preliminary, these findings may suggest new perspective for novel therapeutic targets in the treatment of several muscle diseases.-Cirillo, F., Resmini, G., Ghiroldi, A., Piccoli, M., Bergante, S., Tettamanti, G., Anastasia, L. Activation of the hypoxia-inducible factor 1α promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Hipertrofia/metabolismo , Camundongos , Desenvolvimento Muscular/fisiologia , Mioblastos Esqueléticos/metabolismo , RNA Mensageiro/metabolismo , beta Catenina/metabolismo
18.
Int J Mol Sci ; 19(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332812

RESUMO

Despite considerable improvements in the treatment of cardiovascular diseases, heart failure (HF) still represents one of the leading causes of death worldwide. Poor prognosis is mostly due to the limited regenerative capacity of the adult human heart, which ultimately leads to left ventricular dysfunction. As a consequence, heart transplantation is virtually the only alternative for many patients. Therefore, novel regenerative approaches are extremely needed, and several attempts have been performed to improve HF patients' clinical conditions by promoting the replacement of the lost cardiomyocytes and by activating cardiac repair. In particular, cell-based therapies have been shown to possess a great potential for cardiac regeneration. Different cell types have been extensively tested in clinical trials, demonstrating consistent safety results. However, heterogeneous efficacy data have been reported, probably because precise end-points still need to be clearly defined. Moreover, the principal mechanism responsible for these beneficial effects seems to be the paracrine release of antiapoptotic and immunomodulatory molecules from the injected cells. This review covers past and state-of-the-art strategies in cell-based heart regeneration, highlighting the advantages, challenges, and limitations of each approach.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Coração/fisiologia , Regeneração/fisiologia , Animais , Ensaios Clínicos como Assunto , Humanos , Modelos Biológicos
19.
J Biol Chem ; 291(20): 10615-24, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26987901

RESUMO

NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking.


Assuntos
Neuraminidase/metabolismo , Membrana Celular/enzimologia , Chaperona BiP do Retículo Endoplasmático , Endossomos/enzimologia , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Neuraminidase/química , Neuraminidase/genética , Dobramento de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estresse Fisiológico , Regulação para Cima
20.
Basic Res Cardiol ; 112(6): 68, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079873

RESUMO

Cardiovascular diseases are the leading cause of death in the Western world. Unfortunately, current therapies are often only palliative, consequently essentially making heart transplantation necessary for many patients. However, several novel therapeutic approaches in the past two decades have yielded quite encouraging results. The generation of induced pluripotent stem cells, through the forced expression of stem cell-specific transcription factors, has inspired the most promising strategies for heart regeneration by direct reprogramming of cardiac fibroblasts into functional cardiomyocytes. Initial attempts at this reprogramming were conducted using a similar approach to the one used with transcription factors, but during years, novel strategies have been tested, e.g., miRNAs, recombinant proteins and chemical molecules. Although preliminary results on animal models are promising, the low reprogramming efficiency, as well as the incomplete maturation of the cardiomyocytes, still represents important obstacles. This review covers direct transdifferentiation strategies that have been proposed and developed and illustrates the pros and cons of each approach. Indeed, as described in the manuscript, there are still many unanswered questions and drawbacks that require a better understanding of the basic signaling pathways and transcription factor networks before functional cells, suitable for cardiac regeneration and safe for the patients, can be generated and used for human therapies.


Assuntos
Técnicas de Reprogramação Celular/métodos , Coração/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular , Humanos , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA