Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(27): 10871-10876, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38937865

RESUMO

Breath analysis with secondary electrospray ionization (SESI) coupled to mass spectrometry (MS) is a sensitive method for breath metabolomics. To enable quantitative assessments using SESI-MS, a system was developed to introduce controlled amounts of gases into breath samples and carry out standard addition experiments. The system combines gas standard generation through controlled evaporation, humidification, breath dilution, and standard injection with the help of mass-flow controllers. The system can also dilute breath, which affects the signal of the detected components. This response can be used to filter out contaminating compounds in an untargeted metabolomics workflow. The system's quantitative capabilities have been shown through standard addition of pyridine and butyric acid into breath in real time. This system can improve the quality and robustness of breath data.


Assuntos
Testes Respiratórios , Piridinas , Espectrometria de Massas por Ionização por Electrospray , Testes Respiratórios/métodos , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Piridinas/análise , Metabolômica/métodos , Ácido Butírico/análise , Gases/análise , Padrões de Referência
2.
Rapid Commun Mass Spectrom ; 38(8): e9714, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38389333

RESUMO

RATIONALE: Secondary-electrospray ionization (SESI) coupled with high-resolution mass spectrometry is a powerful tool for the discovery of biomarkers in exhaled breath. A primary electrospray consisting of aqueous formic acid (FA) is currently used to charge the volatile organic compounds in breath. To investigate whether alternate electrospray compositions could enable different metabolite coverage and sensitivities, the electrospray dopants NaI and AgNO3 were tested. METHODS: In a proof-of-principle manner, the exhaled breath of one subject was analyzed repeatedly with different electrospray solutions and with the help of a spectral stitching technique. Capillary diameter and position were optimized to achieve proper detection of exhaled breath. The detected features were then compared using formula annotation. Using an evaporation-based gas standard system, the signal response of the different solutions was probed. RESULTS: Principal component analysis revealed a substantial difference in features detected with AgNO3 . With silver, more sulfur-containing features and more unsaturated hydrocarbon compounds were detected. Furthermore, more primary amines were potentially ionized, as indicated by van Krewelen diagrams. In total, twice as many features were unique to AgNO3 than for other electrospray dopants. Using gas standards at known concentrations, the high sensitivity of FA as a dopant was demonstrated but also indicated alternate sensitivities of the other electrospray solutions. CONCLUSIONS: This work demonstrated the potential of AgNO3 as a complementary dopant for further biomarker discovery in SESI-based breath analysis.


Assuntos
Metabolômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Metabolômica/métodos , Testes Respiratórios/métodos , Expiração , Eletrólitos
3.
J Breath Res ; 18(4)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39089291

RESUMO

Polymeric bags are a widely applied, simple, and cost-effective method for the storage and offline analysis of gaseous samples. Various materials have been used as sampling bags, all known to contain impurities and differing in their cost, durability, and storage capabilities. Herein, we present a comparative study of several well-known bag materials, Tedlar (PVF), Kynar (PVDF), Teflon (PTFE), and Nalophan (PET), as well as a new material, ethylene vinyl copolymer (EVOH), commonly used for storing food. We investigated the influences of storage conditions, humidity, bag cleaning, and light exposure on volatile organic compound concentration (acetone, acetic acid, isoprene, benzene, limonene, among others) in samples of exhaled human breath stored in bags for up to 48 h. Specifically, we show high losses of short-chain fatty acids (SCFAs) in bags of all materials (for most SCFAs, less than 50% after 8 h of storage). We found that samples in Tedlar, Nalophan, and EVOH bags undergo changes in composition when exposed to UV radiation over a period of 48 h. We report high initial impurity levels in all the bags and their doubling after a period of 48 h. We compare secondary electrospray ionization and proton transfer reaction mass spectrometry in the context of offline analysis after storage in sampling bags. We provide an analytical perspective on the temporal evolution of bag contents by presenting the intensity changes of all significantm/zfeatures. We also present a simple, automated, and cost-effective offline sample introduction system, which enables controlled delivery of collected gaseous samples from polymeric bags into the mass spectrometer. Overall, our findings suggest that sampling bags exhibit high levels of impurities, are sensitive to several environmental factors (e.g. light exposure), and provide low recoveries for some classes of compounds, e.g. SCFAs.


Assuntos
Testes Respiratórios , Polímeros , Humanos , Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Polímeros/análise , Compostos Orgânicos Voláteis/análise , Expiração , Manejo de Espécimes/métodos , Manejo de Espécimes/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA