Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1830(8): 4265-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23643965

RESUMO

BACKGROUND: Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi. METHODS: (32)Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na(+), H(+) and K(+) fluxes were also investigated. The transport capacities of different evolutive forms were compared. RESULTS: Epimastigotes grew significantly more slowly in 2mM than in 50mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na(+). We found that the parasites express TcPho84, a H(+):Pi-symporter, and TcPho89, a Na(+):Pi-symporter. Both Pi influx mechanisms showed Michaelis-Menten kinetics, with a one-order of magnitude higher affinity for the Na(+)-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K(+) ionophore) or SCH28028 (inhibitor of (H(+)+K(+))ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H(+) gradient energizes uphill Pi entry and that K(+) recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na(+)-ATPase, decreased only the Na(+)-dependent Pi uptake, indicating that this Na(+) pump generates the Na(+) gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently. CONCLUSIONS: Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na(+) or H(+)/K(+) fluxes. GENERAL SIGNIFICANCE: This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.


Assuntos
Fosfatos/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Trypanosoma cruzi/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Concentração de Íons de Hidrogênio , Imidazóis/farmacologia , Valinomicina/farmacologia
2.
Parasitology ; 137(5): 773-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19961654

RESUMO

An ATP diphosphohydrolase (EC 3.6.1.5) activity was identified in a Leishmania (Viannia) braziliensis promastigotes preparation (Lb). Ultrastructural cytochemical microscopy showed this protein on the parasite surface and also stained a possible similar protein at the mitochondrial membrane. Isolation of an active ATP diphosphohydrolase isoform from Lb was obtained by cross-immunoreactivity with polyclonal anti-potato apyrase antibodies. These antibodies, immobilized on Protein A-Sepharose, immunoprecipitated a polypeptide of approximately 48 kDa and, in lower amount, a polypeptide of approximately 43 kDa, and depleted 83% ATPase and 87% of the ADPase activities from detergent-homogenized Lb. Potato apyrase was recognized in Western blots by IgG antibody from American cutaneous leishmaniasis (ACL) patients, suggesting that the parasite and vegetable proteins share antigenic conserved epitopes. Significant IgG seropositivity in serum samples diluted 1:50 from ACL patients (n=20) for Lb (65%) and potato apyrase (90%) was observed by ELISA technique. Significant IgG antibody reactivity was also observed against synthetic peptides belonging to a conserved domain from L. braziliensis NDPase (80% seropositivity) and its potato apyrase counterpart (50% seropositivity), in accordance with the existence of shared antigenic epitopes and demonstrating that in leishmaniasis infection the domain r82-103 from L. braziliensis NDPase is a target for the human immune response.


Assuntos
Apirase/metabolismo , Leishmania braziliensis/enzimologia , Leishmaniose Cutânea/parasitologia , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Apirase/genética , Apirase/imunologia , Western Blotting , Humanos , Imunoprecipitação , Isoenzimas , Leishmania braziliensis/imunologia , Leishmania braziliensis/ultraestrutura , Leishmaniose Cutânea/imunologia , Microscopia Eletrônica , Dados de Sequência Molecular
3.
Parasitology ; 135(3): 327-35, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18005473

RESUMO

A Leishmania (Leishmania) amazonensis ATP diphosphohydrolase isoform was partially purified from plasma membrane of promastigotes by preparative non-denaturing polyacrylamide gel electrophoresis. SDS-PAGE followed by Western blots developed with polyclonal anti-potato apyrase antibodies identified diffuse bands of about 58-63 kDa, possibly glycosylated forms of this protein. By ELISA technique, a significantly higher total IgG antibody level against potato apyrase was found in serum from promastigote-infected mice, as compared to the uninfected mice, confirming both the existence of shared epitopes between the parasite and vegetable proteins, and the parasite ATP diphosphohydrolase antigenicity. By Western blotting, serum from amastigote-infected BALB/c mice recognizes both potato apyrase and this antigenic ATP diphosphohydrolase isoform isolated from promastigotes, suggesting that it is also expressed in the amastigote stage. The infection monitored along a 90-day period in amastigote-infected mice showed reactivity of IgG2a antibody in early steps of infection, while the disappearance of the IgG2a response and elevation of IgG1 antibody serum levels against that shared epitopes were associated with the progression of experimental leishmaniasis. This is the first observation of the antigenicity of a L. (L.) amazonensis ATP diphosphohydrolase isoform, and of the ability of cross-immunoreactivity with potato apyrase to differentiate serologically stages of leishmaniasis in infected mice.


Assuntos
Apirase/imunologia , Leishmania mexicana/enzimologia , Leishmaniose Cutânea/diagnóstico , Solanum tuberosum/enzimologia , Animais , Variação Antigênica , Apirase/isolamento & purificação , Apirase/metabolismo , Western Blotting , Reações Cruzadas , Progressão da Doença , Eletroforese em Gel de Poliacrilamida , Epitopos , Feminino , Isoenzimas/imunologia , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA