Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593032

RESUMO

Trehalose 6-phosphate (Tre6P) is an essential signal metabolite that regulates the level of sucrose, linking growth and development to the metabolic status. We hypothesized that Tre6P plays a role in mediating the regulation of gene expression by sucrose. To test this, we performed transcriptomic profiling on Arabidopsis (Arabidopsis thaliana) plants that expressed a bacterial TREHALOSE 6-PHOSPHATE SYNTHASE (TPS) under the control of an ethanol-inducible promoter. Induction led to a 4-fold rise in Tre6P levels, a concomitant decrease in sucrose, significant changes (FDR ≤ 0.05) of over 13,000 transcripts, and two-fold or larger changes of over 5000 transcripts. Comparison with nine published responses to sugar availability allowed some of these changes to be linked to the rise in Tre6P, while others were probably due to lower sucrose or other indirect effects. Changes linked to Tre6P included repression of photosynthesis-related gene expression and induction of many growth-related processes including ribosome biogenesis. About 500 starvation-related genes are known to be induced by SUCROSE-NON-FERMENTING-1-RELATED KINASE 1 (SnRK1). They were largely repressed by Tre6P in a manner consistent with SnRK1 inhibition by Tre6P. SnRK1 also represses many genes that are involved in biosynthesis and growth. These responded to Tre6P in a more complex manner, pointing toward Tre6P interacting with other C-signaling pathways. Additionally, elevated Tre6P modified the expression of genes encoding regulatory subunits of the SnRK1 complex and TPS class II and FCS-LIKE ZINC FINGER proteins that are thought to modulate SnRK1 function and genes involved in circadian, TARGET OF RAPAMYCIN-, light, abscisic acid, and other hormone signaling.

2.
Mol Psychiatry ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879719

RESUMO

Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.

3.
Cell Mol Biol Lett ; 29(1): 44, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553684

RESUMO

Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças Mitocondriais , Células Precursoras de Oligodendrócitos , Transtornos Psicomotores , Camundongos , Animais , Regulação para Baixo/genética , Células Precursoras de Oligodendrócitos/metabolismo , Ácido Aspártico/metabolismo , Isoformas de Proteínas/metabolismo , Ácidos Graxos
4.
Vaccine ; 42(7): 1841-1849, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38311533

RESUMO

The Mpox (formerly named Monkeypox) virus is the etiological cause of a recent multi-country outbreak, with thousands of distinct cases detected outside the endemic areas of Africa as of December 2023. In this article, we analyze the sequences of full genomes of Mpox virus from Europe and compare them with all available Mpox sequences of historical relevance, annotated by year and geographic origin, as well as related Cowpox and Variola (smallpox) virus sequences. Our results show that the recent outbreak is most likely originating from the West African clade of Mpox, with >99 % sequence identity with sequences derived from historical and recent cases, dating from 1971 to 2017. We analyze specific mutations occurring in viral proteins between the current outbreak, previous Mpox and Cowpox sequences, and the historical Variola virus. Genome-wide sequence analysis of the recent outbreak and other Mpox/Cowpox/Variola viruses shows a very high conservation, with 97.9 % (protein-based) and 97.8 % (nucleotide-based) sequence identity. We identified significant correlation in human transcriptional responses as well, with a conserved immune pathway response induced in human cell cultures by the three families of Pox virus. The similarities identified between the major strains of Pox viruses, as well as within the Mpox clades, both at the genomic and transcriptomic levels, provide a molecular basis for the observed efficacy of Variola vaccines in other Poxviruses.


Assuntos
Varíola Bovina , Mpox , Poxviridae , Varíola , Vírus da Varíola , Animais , Humanos , Mpox/epidemiologia , DNA Viral/genética , Monkeypox virus/genética , Genômica , Surtos de Doenças , Perfilação da Expressão Gênica
5.
J Mol Endocrinol ; 73(1)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564418

RESUMO

The estrogen receptor-α (ER) drives 75% of breast cancers. On activation, the ER recruits and assembles a 1-2 MDa transcriptionally active complex. These complexes can modulate tumour growth, and understanding the roles of individual proteins within these complexes can help identify new therapeutic targets. Here, we present the discovery of ER and ZMIZ1 within the same multi-protein assembly by quantitative proteomics, and validated by proximity ligation assay. We characterise ZMIZ1 function by demonstrating a significant decrease in the proliferation of ER-positive cancer cell lines. To establish a role for the ER-ZMIZ1 interaction, we measured the transcriptional changes in the estrogen response post-ZMIZ1 knockdown using an RNA-seq time-course over 24 h. Gene set enrichment analysis of the ZMIZ1-knockdown data identified a specific delay in the response of estradiol-induced cell cycle genes. Integration of ENCODE data with our RNA-seq results identified that ER and ZMIZ1 both bind the promoter of E2F2. We therefore propose that ER and ZMIZ1 interact to enable the efficient estrogenic response at subset of cell cycle genes via a novel ZMIZ1-ER-E2F2 signalling axis. Finally, we show that high ZMIZ1 expression is predictive of worse patient outcome, ER and ZMIZ1 are co-expressed in breast cancer patients in TCGA and METABRIC, and the proteins are co-localised within the nuclei of tumour cell in patient biopsies. In conclusion, we establish that ZMIZ1 is a regulator of the estrogenic cell cycle response and provide evidence of the biological importance of the ER-ZMIZ1 interaction in ER-positive patient tumours, supporting potential clinical relevance.


Assuntos
Neoplasias da Mama , Fator de Transcrição E2F2 , Receptor alfa de Estrogênio , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Linhagem Celular Tumoral , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F2/genética , Proliferação de Células/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Ciclo Celular/genética , Prognóstico
6.
Genome Med ; 16(1): 54, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589970

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related death in the world. In contrast to many other cancers, a direct connection to modifiable lifestyle risk in the form of tobacco smoke has long been established. More than 50% of all smoking-related lung cancers occur in former smokers, 40% of which occur more than 15 years after smoking cessation. Despite extensive research, the molecular processes for persistent lung cancer risk remain unclear. We thus set out to examine whether risk stratification in the clinic and in the general population can be improved upon by the addition of genetic data and to explore the mechanisms of the persisting risk in former smokers. METHODS: We analysed transcriptomic data from accessible airway tissues of 487 subjects, including healthy volunteers and clinic patients of different smoking statuses. We developed a computational model to assess smoking-associated gene expression changes and their reversibility after smoking is stopped, comparing healthy subjects to clinic patients with and without lung cancer. RESULTS: We find persistent smoking-associated immune alterations to be a hallmark of the clinic patients. Integrating previous GWAS data using a transcriptional network approach, we demonstrate that the same immune- and interferon-related pathways are strongly enriched for genes linked to known genetic risk factors, demonstrating a causal relationship between immune alteration and lung cancer risk. Finally, we used accessible airway transcriptomic data to derive a non-invasive lung cancer risk classifier. CONCLUSIONS: Our results provide initial evidence for germline-mediated personalized smoke injury response and risk in the general population, with potential implications for managing long-term lung cancer incidence and mortality.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fumar/efeitos adversos , Fumar/genética , Pulmão/metabolismo , Nicotiana , Mucosa Nasal/metabolismo , Transcriptoma
7.
Nat Commun ; 15(1): 5585, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992040

RESUMO

MYCN oncogene amplification is frequently observed in aggressive childhood neuroblastoma. Using an unbiased large-scale mutagenesis screen in neuroblastoma-prone transgenic mice, we identify a single germline point mutation in the transcriptional corepressor Runx1t1, which abolishes MYCN-driven tumorigenesis. This loss-of-function mutation disrupts a highly conserved zinc finger domain within Runx1t1. Deletion of one Runx1t1 allele in an independent Runx1t1 knockout mouse model is also sufficient to prevent MYCN-driven neuroblastoma development, and reverse ganglia hyperplasia, a known pre-requisite for tumorigenesis. Silencing RUNX1T1 in human neuroblastoma cells decreases colony formation in vitro, and inhibits tumor growth in vivo. Moreover, RUNX1T1 knockdown inhibits the viability of PAX3-FOXO1 fusion-driven rhabdomyosarcoma and MYC-driven small cell lung cancer cells. Despite the role of Runx1t1 in MYCN-driven tumorigenesis neither gene directly regulates the other. We show RUNX1T1 forms part of a transcriptional LSD1-CoREST3-HDAC repressive complex recruited by HAND2 to enhancer regions to regulate chromatin accessibility and cell-fate pathway genes.


Assuntos
Carcinogênese , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Camundongos Knockout , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA