RESUMO
Evolution of vascular plants required compromise between photosynthesis and photodamage. We analyzed representative species from two divergent lineages of vascular plants, lycophytes and euphyllophytes, with respect to the response of their photosynthesis and light-harvesting properties to increasing light intensity. In the two analyzed lycophytes, Selaginella martensii and Lycopodium squarrosum, the medium phase of non-photochemical quenching relaxation increased under high light compared to euphyllophytes. This was thought to be associated with the occurrence of a further thylakoid phosphoprotein in both lycophytes, in addition to D2, CP43 and Lhcb1-2. This protein, which showed light intensity-dependent reversible phosphorylation, was identified in S. martensii as Lhcb6, a minor LHCII antenna subunit of PSII. Lhcb6 is known to have evolved in the context of land colonization. In S. martensii, Lhcb6 was detected as a component of the free LHCII assemblies, but also associated with PSI. Most of the light-induced changes affected the amount and phosphorylation of the LHCII assemblies, which possibly mediate PSI-PSII connectivity. We propose that Lhcb6 is involved in light energy management in lycophytes, participating in energy balance between PSI and PSII through a unique reversible phosphorylation, not yet observed in other land plants.
Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Lycopodium/metabolismo , Fotossíntese/efeitos da radiação , Selaginellaceae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clorofila/metabolismo , DNA Complementar/química , DNA Complementar/genética , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Lycopodium/efeitos da radiação , Dados de Sequência Molecular , Fosforilação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/efeitos da radiação , RNA de Plantas/genética , Selaginellaceae/efeitos da radiação , Análise de Sequência de DNA , Especificidade da Espécie , Tilacoides/metabolismo , Tilacoides/efeitos da radiaçãoRESUMO
Neochloris oleoabundans (Chlorophyta) is widely considered one of the most promising microalgae for biotechnological applications. However, the large-scale production of microalgae requires large amounts of water. In this perspective, the possibility of using exhausted growth media for the re-cultivation of N. oleoabundans was investigated in order to simultaneously make the cultivation more economically feasible and environmentally sustainable. Experiments were performed by testing the following media: autotrophic exhausted medium (E+) and mixotrophic exhausted medium after cultivation with glucose (EG+) of N. oleoabundans cells grown in a 20-L photobioreactor (PBR). Both exhausted media were replenished with the same amounts of nitrate and phosphate as the control brackish medium (C). Growth kinetics, nitrate and phosphate consumption, photosynthetic pigments content, photosynthetic efficiency, cell morphology, and lipid production were evaluated. Moreover, the free fatty acid (FFA) composition of exhausted media and the polyamine (PA) concentrations of both algae and media were analyzed in order to test if some molecules, released into the medium, could influence algal growth and metabolism. Results showed that N. oleoabundans can efficiently grow in both exhausted media, if appropriately replenished with the main nutrients (E+ and EG+), especially in E+ and to the same extent as in C medium. Growth promotion of N. oleoabundans was attributed to PAs and alteration of the photosynthetic apparatus to FFAs. Taken together, results show that recycling growth medium is a suitable solution to obtain good N. oleoabundans biomass concentrations, while providing a more sustainable ecological impact on water resources.
Assuntos
Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Meios de Cultura/química , Ácidos Graxos não Esterificados/análise , Poliaminas/análiseRESUMO
Room temperature (RT) microspectrofluorimetry in vivo of single cells has a great potential in photosynthesis studies. In order to get new information on RT chlorophyll fluorescence bands, we analyzed the spectra of Chlamydomonas reinhardtii mutants lacking fundamental proteins of the thylakoid membrane and spectra of photoinhibited WT cells. RT spectra of single living cells were characterized thorough derivative analyses and Gaussian deconvolution. The results obtained suggest that the dynamism in LHCII assembly could be sufficient to explain the variations in amplitudes of F680 (free LHCII), F694 (LHCII-PSII) and F702 (LHCII aggregates); F686 was assigned to the PSII core. Based on the revised assignments and on the variations observed, we discuss the meaning of the two fluorescence emission ratios F680/(F686 + F694) and F702/(F686 + F694), showing that these are sensitive parameters under moderate photoinhibition. In the most photoinhibited samples, the RT spectra tended to degenerate, showing characteristics of mutants that are partly depleted in PSII.
Assuntos
Chlamydomonas reinhardtii/química , Clorofila/química , Complexo de Proteína do Fotossistema II/química , Tilacoides/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clorofila/genética , Clorofila/metabolismo , Temperatura Alta , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Tilacoides/genética , Tilacoides/metabolismoRESUMO
Basic understanding of the photosynthetic physiology of the oleaginous green microalga Ettlia oleoabundans is still very limited, including the modulation of the photosynthetic membrane upon metabolism conversion from autotrophy to mixotrophy. It was previously reported that, upon glucose supply in the culture medium, E. oleoabundans preserves photosystem II (PSII) from degradation by virtue of a higher packing of thylakoid complexes. In this work, it was investigated whether in the mixotrophic exponential growth phase the PSII activity is merely preserved or even enhanced. Modulated fluorescence parameters were then recorded under short-term treatments with increasing irradiance values of white light. It was found that the mixotrophic microalga down-regulated the chlororespiratory electron recycling from photosystem I (PSI), but enhanced the linear electron flow from PSII to PSI. Ability to keep PSII more open than in autotrophic growth conditions indicated that the respiration of the glucose taken up from the medium fed the carbon fixing reactions with CO2. The overall electron poise was indeed well regulated, with a lesser need for thermal dissipation of excess absorbed energy. It is proposed that the significant, though small, increase in PSII maximum quantum yield in mixotrophic cells just reflects an improved light energy use and an increased photochemical capacity as compared to the autotrophic cells.
Assuntos
Clorófitas/metabolismo , Transporte de Elétrons , Fotossíntese , Dióxido de Carbono/metabolismo , Glucose/metabolismo , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismoRESUMO
The flexible association of the light harvesting complex II (LHCII) to photosystem (PS) I and PSII to balance their excitation is a major short-term acclimation process of the thylakoid membrane, together with the thermal dissipation of excess absorbed energy, reflected in non-photochemical quenching of chlorophyll fluorescence (NPQ). In Pisum sativum, the leaf includes two main photosynthetic parts, the basal stipules and the leaflets. Since the stipules are less efficient in carbon fixation than leaflets, the adjustments of the thylakoid system, which safeguard the photosynthetic membrane against photodamage, were analysed. As compared to leaflets, the stipules experienced a decay in PSII photochemical activity. The supramolecular organization of photosystems in stipules showed a more conspicuous accumulation of large PSII-LHCII supercomplexes in the grana, but also a tendency to retain the PSI-LHCI-LHCII state transition complex and the PSI-LHCI-PSII-LHCII megacomplexes probably located at the interface between appressed and stroma-exposed membranes. As a consequence, stipules had a lower capacity to perform state transitions and the overall thylakoid architecture was less structurally flexible and ordered than in leaflets. Yet, stipules proved to be quite efficient in regulating the redox state of the electron transport chain and more capable of inducing NPQ than leaflets. It is proposed that, in spite of a relatively static thylakoid arrangement, LHCII interaction with both photosystems in megacomplexes can contribute to a regulated electron flow.
RESUMO
In the recent years, the studies concerning the cultivation of Neochloris oleoabundans for biofuel purposes have increased, in relation to its capability to accumulate lipids when grown under nutrient starvation. Unfortunately, this cultivation mode does not allow to reach high biomass densities, which are required to improve the feasibility of the process. Increasing knowledge of the microalgal physiology is necessary to obtain new useful information for the improvement of culture performance in the perspective of large-scale cultivation. In this work, the mixotrophic cultivation of N. oleoabundans in a brackish medium added with different glucose concentrations has been tested under shaking, with the aim of stimulating growth alongside lipid accumulation inside cells. Cell morphology, glucose consumption, photosynthetic pigment content and photosynthetic efficiency were also investigated. Among all tested glucose concentrations (0-30 g L(-1)), it was observed that 2.5 g L(-1) was the optimal concentration, allowing to obtain the best compromise between glucose supplement, biomass production and lipid accumulation. Growth was highly enhanced in mixotrophic cultures, linked to the release of cells from sporocysts. A unique feature characterising mixotrophy in N. oleoabundans was the promotion of the maximum quantum yield of Photosystem II. Moreover, when mixotrophic cells entered the stationary phase, high lipid accumulation was induced. This study shows that the addition of glucose to N. oleoabundans remarkably increases the production of biomass enriched in lipids and represents an advancement for the cultivation of this microalga for applied purposes.
Assuntos
Biomassa , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento , Glucose/farmacologia , Lipídeos/biossíntese , Cloroplastos/ultraestrutura , Relação Dose-Resposta a Droga , Fluorometria , Fotossíntese , Edulcorantes/farmacologiaRESUMO
Neochloris oleoabundans is considered one of the most promising oil-rich microalgae because of its ability to store lipids under nitrogen starvation. However, high biomass densities, required for applications on medium to large scale, are not reached in this condition of growth. As previous studies on other microalgae have shown that mixotrophy allows to obtain higher biomass in comparison to autotrophic cultures, we performed morphophysiological analyses in order to test the mixotrophic growth capability of N. oleoabundans. A carbon-rich manure derived from the apple vinegar production (AWP) was added to the medium. Cells were also cultivated under nutrient starvation (tap water), to observe the expected lipids accumulation, and combining AWP to water, to test the potential of this waste in a low-cost culture system. The results highlighted that AWP in the medium allowed to obtain the highest final cell density. Moreover, starch granules were stored inside chloroplast at the beginning of the experiment. The presence of AWP did not induce variations on light harvesting complex II (LHCII)-photosystem II (PSII) assembly, even if an interesting promotion of pigment synthesis in cells was observed. On the other hand, in starved cells, chloroplast degeneration, pigment content decrease, altered LHCII-PSII assembly and accumulation of high amount of lipid globules were observed, irrespective of the presence of AWP. The results suggest that mixotrophy promotes growth in N. oleoabundans and open up the possibility of using waste products from agri-food industries for this purpose. After growth, cells could be transferred under nutrient starvation to induce lipid accumulation.
Assuntos
Carbono/metabolismo , Clorófitas/fisiologia , Resíduos , Clorófitas/citologia , Clorófitas/metabolismoRESUMO
The freshwater microalga Neochloris oleoabundans was used to study algal lipid production in enriched natural seawater, in order to assess its suitability as biodiesel feedstock. Optimal and nitrogen-stress (N-stress) conditions were analyzed. Under optimal conditions, the strain's growth rate was 0.73 div day(-1) and the biomass concentration was 1.5 g L(-1), while it had a maximum lipid yield under N-stress conditions (lipid content: 26% of dry weigh and lipid productivity: 56 mg L(-1) day(-1)). Lipid accumulation was mainly due to a significant increase of triacylglycerol content. Neutral lipids were characterized by a dominance of monounsaturated fatty acids and displayed a fatty acid profile that is suitable for biodiesel. This work offers an interesting alternative for sustainable microalgal oil synthesis for biodiesel production without using freshwater resources. However, further studies are necessary in order to optimize the lipid productivities required for commercial biodiesel production.