Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Am Chem Soc ; 144(8): 3603-3613, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179895

RESUMO

We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal-organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in tandem with an increase in density of 38% and corresponding increase in heat capacity of ∼48%, defying conventional effective medium scaling of thermal properties of porous materials. We explore the origin of this reduction by experimentally investigating the guest molecules' effects on the mechanical properties of the MOF and performing atomistic simulations to elucidate the roles of the mass and bonding environments on thermal conductivity. The reduction in thermal conductivity can be ascribed to an increase in vibrational scattering introduced by extrinsic guest-MOF collisions as well as guest molecule-induced modifications to the intrinsic vibrational structure of the MOF in the form of hybridization of low frequency modes that is concomitant with an enhanced population of localized modes. The concentration of localized modes and resulting reduction in thermal conductivity do not seem to be significantly affected by the mass or bonding strength of the guest species.

2.
J Am Chem Soc ; 144(38): 17576-17587, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36102706

RESUMO

Flower-like polyacrylonitrile (PAN) particles have shown promising performance for numerous applications, including sensors, catalysis, and energy storage. However, the detailed formation process of these unique structures during polymerization has not been investigated. Here, we elucidate the formation process of flower-like PAN particles through a series of in situ and ex situ experiments. We have the following key findings. First, lamellar petals within the flower-like particles were predominantly orthorhombic PAN crystals. Second, branching of the lamellae during the particle formation arose from PAN's fast nucleation and growth on pre-existing PAN crystals, which was driven by the poor solubility of PAN in the reaction solvent. Third, the particles were formed to maintain a constant center-to-center distance during the reaction. The separation distance was attributed to strong electrostatic repulsion, which resulted in the final particles' spherical shape and uniform size. Lastly, we employed the understanding of the formation mechanism to tune the PAN particles' morphology using several experimental parameters including incorporating comonomers, changing temperature, adding nucleation seeds, and adjusting the monomer concentration. These findings provide important insights into the bottom-up design of advanced nanostructured PAN-based materials and controlled polymer nanostructure self-assemblies.


Assuntos
Resinas Acrílicas , Polímeros , Tamanho da Partícula , Polímeros/química , Solventes
3.
Nano Lett ; 18(10): 6271-6278, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216078

RESUMO

Metal halide perovskite thin films have achieved remarkable performance in optoelectronic devices but suffer from spatial heterogeneity in their electronic properties. To achieve higher device performance and reliability needed for widespread commercial deployment, spatial heterogeneity of optoelectronic properties in the perovskite thin film needs to be understood and controlled. Clear identification of the causes underlying this heterogeneity, most importantly the spatial heterogeneity in charge trapping behavior, has remained elusive. Here, a multimodal imaging approach consisting of photoluminescence, optical transmission, and atomic force microscopy is utilized to separate electronic heterogeneity from morphology variations in perovskite thin films. By comparing the degree of heterogeneity in highly oriented and randomly oriented polycrystalline perovskite thin film samples, we reveal that disorders in the crystallographic orientation of the grains play a dominant role in determining charge trapping and electronic heterogeneity. This work also demonstrates a polycrystalline thin film with uniform charge trapping behavior by minimizing crystallographic orientation disorder. These results suggest that single crystals may not be required for perovskite thin film based optoelectronic devices to reach their full potential.

4.
Proc Natl Acad Sci U S A ; 112(18): 5561-6, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902502

RESUMO

The electronic properties of solution-processable small-molecule organic semiconductors (OSCs) have rapidly improved in recent years, rendering them highly promising for various low-cost large-area electronic applications. However, practical applications of organic electronics require patterned and precisely registered OSC films within the transistor channel region with uniform electrical properties over a large area, a task that remains a significant challenge. Here, we present a technique termed "controlled OSC nucleation and extension for circuits" (CONNECT), which uses differential surface energy and solution shearing to simultaneously generate patterned and precisely registered OSC thin films within the channel region and with aligned crystalline domains, resulting in low device-to-device variability. We have fabricated transistor density as high as 840 dpi, with a yield of 99%. We have successfully built various logic gates and a 2-bit half-adder circuit, demonstrating the practical applicability of our technique for large-scale circuit fabrication.

5.
Nature ; 480(7378): 504-8, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22193105

RESUMO

Circuits based on organic semiconductors are being actively explored for flexible, transparent and low-cost electronic applications. But to realize such applications, the charge carrier mobilities of solution-processed organic semiconductors must be improved. For inorganic semiconductors, a general method of increasing charge carrier mobility is to introduce strain within the crystal lattice. Here we describe a solution-processing technique for organic semiconductors in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules. For organic semiconductors, the spacing between cofacially stacked, conjugated backbones (the π-π stacking distance) greatly influences electron orbital overlap and therefore mobility. Using our method to incrementally introduce lattice strain, we alter the π-π stacking distance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) from 3.33 Å to 3.08 Å. We believe that 3.08 Å is the shortest π-π stacking distance that has been achieved in an organic semiconductor crystal lattice (although a π-π distance of 3.04 Å has been achieved through intramolecular bonding). The positive charge carrier (hole) mobility in TIPS-pentacene transistors increased from 0.8 cm(2) V(-1) s(-1) for unstrained films to a high mobility of 4.6 cm(2) V(-1) s(-1) for a strained film. Using solution processing to modify molecular packing through lattice strain should aid the development of high-performance, low-cost organic semiconducting devices.

6.
Nat Mater ; 12(7): 665-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23727951

RESUMO

Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach--termed fluid-enhanced crystal engineering (FLUENCE)--that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm(2) V(-1) s(-1) and 11 cm(2) V(-1) s(-1). FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics.

7.
ACS Appl Mater Interfaces ; 15(46): 53913-53923, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955400

RESUMO

Solution shearing, a meniscus-guided coating process, can create large-area metal-organic framework (MOF) thin films rapidly, which can lead to the formation of uniform membranes for separations or thin films for sensing and catalysis applications. Although previous work has shown that solution shearing can render MOF thin films, examples have been limited to a few prototypical systems, such as HKUST-1, Cu-HHTP, and UiO-66. Here, we expand on the applicability of solution shearing by making thin films of NU-901, a zirconium-based MOF. We study how the NU-901 thin film properties (i.e., crystallinity, surface coverage, and thickness) can be controlled as a function of substrate temperature and linker concentration. High fractional surface coverage of small-area (∼1 cm2) NU-901 thin films (0.88 ± 0.06) is achieved on a glass substrate for all conditions after one blade pass, while a low to moderate fractional surface coverage (0.73 ± 0.18) is obtained for large-area (∼5 cm2) NU-901 thin films. The crystallinity of NU-901 crystals increases with temperature and decreases with linker concentration. On the other hand, the adjusted thickness of NU-901 thin films increases with both increasing temperature and linker concentration. We also extend the solution shearing technique to synthesize MOF-525 thin films on a transparent conductive oxide that are useful for electrocatalysis. We show that Fe-metalated MOF-525 films can reduce CO2 to CO, which has implications for CO2 capture and utilization. The demonstration of thin film formation of NU-901 and MOF-525 using solution shearing on a wide range of substrates will be highly useful for implementing these MOFs in sensing and catalytic applications.

8.
JACS Au ; 2(2): 453-462, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35252994

RESUMO

Synthesis of porous, covalent crystals such as zeolites and metal-organic frameworks (MOFs) cannot be described adequately using existing crystallization theories. Even with the development of state-of-the-art experimental and computational tools, the identification of primary mechanisms of nucleation and growth of MOFs remains elusive. Here, using time-resolved in-situ X-ray scattering coupled with a six-parameter microkinetic model consisting of ∼1 billion reactions and up to ∼100 000 metal nodes, we identify autocatalysis and oriented attachment as previously unrecognized mechanisms of nucleation and growth of the MOF UiO-66. The secondary building unit (SBU) formation follows an autocatalytic initiation reaction driven by a self-templating mechanism. The induction time of MOF nucleation is determined by the relative rate of SBU attachment (chain extension) and the initiation reaction, whereas the MOF growth is primarily driven by the oriented attachment of reactive MOF crystals. The average size and polydispersity of MOFs are controlled by surface stabilization. Finally, the microkinetic model developed here is generalizable to different MOFs and other multicomponent systems.

9.
Lab Chip ; 22(2): 211-224, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34989369

RESUMO

Metal-organic frameworks (MOFs) are porous crystalline structures that are composed of coordinated metal ligands and organic linkers. Due to their high porosity, ultra-high surface-to-volume ratio, and chemical and structural flexibility, MOFs have numerous applications. MOFs are primarily synthesized in batch reactors under harsh conditions and long synthesis times. The continuous depletion of metal ligands and linkers in batch processes affects the kinetics of the oligomerization reaction and, hence, their nucleation and growth rates. Therefore, the existing screening systems that rely on batch processes, such as microtiter plates and droplet-based microfluidics, do not provide reliable nucleation and growth rate data. Significant challenges still exist for developing a relatively inexpensive, safe, and readily scalable screening device and ensuring consistency of results before scaling up. Here, we have designed patterned-surface microfluidic devices for continuous-flow synthesis of MOFs that allow effective and rapid screening of synthesis conditions. The patterned surface reduces the induction time of MOF synthesis for rapid screening while providing support to capture MOF crystals for growth measurements. The efficacy of the continuous-flow patterned microfluidic device to screen polymorphs, morphology, and growth rates is demonstrated for the HKUST-1 MOF. The effects of solvent composition and pH modulators on the morphology, polymorphs, and size distribution of HKUST-1 are evaluated using the patterned microfluidic device. Additionally, a time-resolved FT-IR analysis coupled with the patterned microfluidic device provides quantitative insights into the non-monotonic growth of MOF crystals with respect to the progression of the bulk oligomerization reaction. The patterned microfluidic device can be used to screen crystals with a longer induction time, such as proteins, covalent-organic frameworks, and MOFs.


Assuntos
Estruturas Metalorgânicas , Dispositivos Lab-On-A-Chip , Estruturas Metalorgânicas/química , Microfluídica , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Chem Commun (Camb) ; 57(7): 887-890, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33367364

RESUMO

Several MOF polymorphs exhibit enhanced properties compared to their previously known structures, motivating the development of polymorphic control methods. Here, we study polymorphism in the ZIF-8/ZIF-L system as a function of metal : ligand ratio during synthesis and show a significant shift in the phase transition point towards ZIF-8 with addition of dilute polyethylene oxide during synthesis. Computational results suggest a simple pathway for controlling MOF polymorphism where the choice of polymer can be guided via first-principles simulations.

11.
ACS Appl Mater Interfaces ; 13(8): 10202-10209, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605712

RESUMO

Most metal-organic frameworks (MOFs) have an insulating nature due to their porosity and redox-inactive organic components. The electrical conductivity of the prototypical MOF, HKUST-1, can be tuned by infiltrating a small-molecule organic semiconductor, 7,7,8,8-tetracyanoquinodimethane (TCNQ), into the HKUST-1 pores, creating TCNQ@HKUST-1. However, current processes of creating TCNQ@HKUST-1 films have many roadblocks such as slow crystallization rates, which limit high throughput production, and the formation of Cu(TCNQ) as a byproduct, which affects the electrical conductivity and degrades the chemical structure of HKUST-1. In this work, we show that HKUST-1 films can be rapidly synthesized over large areas with consistent thickness and no pinholes via a meniscus-guided coating technique called solution shearing. The subsequent pore activation process and TCNQ impregnation can be completed via solvent exchange to minimize the formation of the Cu(TCNQ) byproduct, and we obtain an increase in electrical conductivity of the solution-sheared TCNQ@HKUST-1 thin films of over 7 orders of magnitude, reaching a maximum value of 2.42 × 10-2 S m-1 when TCNQ is incorporated for 10 days. The conductivity of solution-sheared TCNQ@HKUST-1 is higher compared to films formed by high-pressure pelletization of TCNQ@HKUST-1. We show that solution shearing can produce large-area thin films rapidly and reduce the formation of grain boundaries better than pelletization, allowing for large-area electronics with both charge transport and porosity for applications as sensors and electronics.

12.
ACS Appl Mater Interfaces ; 13(51): 61827-61837, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913674

RESUMO

A flow-coating method termed solution shearing has been shown to grow large-area thin films with no void spaces. Attaining full coverage is one of the key prerequisites for the adoption of any metal-organic framework (MOF) thin film for a variety of practical applications, including separation, membranes and sensors. However, the solution-shearing process has multiple discrete and continuous parameters that can be varied, including the metal ion and linker concentrations, solvents, substrate temperature, coating speed, and the number of coating passes. Optimization of these parameters for full coverage is a time-consuming and daunting process due to vast parameter space. Here, we incorporate an active learning approach into the solution-sheared HKUST-1 thin-film-processing parameters to control the coverage and extend the approach to gain control over the thickness. The understanding of high-quality MOF thin-film formation using solution shearing is improved by correlating the processing parameter sets and their corresponding film coverage. A large area and fully covered HKUST-1 thin film with a minimized thickness of 2.2 µm is fabricated by using guidance from active learning. To confirm full coverage, a redox-active molecule, called 7,7,8,8-tetracyanoquinodimethane (TCNQ), is incorporated along with the HKUST-1 thin film. The TCNQ@HKUST-1 thin film with a minimized thickness has the same order of magnitude of electrical conductivity as that of the TCNQ@HKUST-1 thin film created previously while reducing the film thickness by 60%. We show that active learning has the potential to rapidly navigate the vast processing space in multicomponent systems, especially when experiments are expensive and traditional computational models are not readily available for process optimization.

13.
Ultrason Sonochem ; 56: 105-113, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31101244

RESUMO

Capillary reactors demonstrate outstanding potential for on-demand flow chemistry applications. However, non-uniform distribution of multiphase flows, poor solid handling, and the risk of clogging limit their usability for continuous manufacturing. While ultrasonic irradiation has been traditionally applied to address some of these limitations, their acoustic efficiency, uniformity and scalability to larger reactor systems are often disregarded. In this work, high-speed microscopic imaging reveals how cavitation-free ultrasound can unclog and prevent the blockage of capillary reactors. Modeling techniques are then adapted from traditional acoustic designs and applied to simulate and prototype sonoreactors with wider and more uniform sonication areas. Blade-, block- and cylindrical shape sonotrodes are optimized to accommodate longer capillary lengths in sonoreactors resonating at 28 kHz. Finally, a novel helicoidal capillary sonoreactor is proposed to potentially deal with a high concentration of solid particles in miniaturized flow chemistry. The acoustic designs and first principle rationalization presented here offer a transformative step forward in the scale-up of efficient capillary sonoreactors.

14.
Nanoscale Adv ; 1(8): 2946-2952, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133596

RESUMO

We present the ability to create unique morphologies of a prototypical metal organic framework (MOF), HKUST-1, by carrying out its crystallization within a set of nano-confined fluidic channels. These channels are fabricated on cyclic olefin copolymer by the high-fidelity hot embossing imprinting method. The picoliter volume synthesis in the nanochannels is hypothesized to bias the balance between nucleation and growth rates to obtain high aspect ratio large-crystalline domains of HKUST-1, which are grown in defined morphologies due to the patterned nanochannels. Confined crystal growth is achieved in nanofluidic channels as shallow as 50 nm. HKUST-1 crystalline domains with aspect ratios greater than 2500, and lengths up to 144 µm are obtained using the nanochannels, exceeding values obtained using chemical modulation and other confinement methods. HKUST-1 crystals are characterized using optical microscopy and scanning electron microscopy with energy dispersive spectroscopy. Porosity of the MOF and selective molecular uptake is demonstrated through inclusion of anthracene and methylene blue within the HKUST-1 framework, and with exclusion of rhodamine B and riboflavin, characterized using a confocal fluorescence microscope. We attribute this selectivity to the analyte size and electrostatic characteristics. Nanoconfined crystallization of MOFs can thus yield control over crystalline morphology to create ideal MOF crystals for enabling selective molecular enrinchment and sensing.

15.
ACS Appl Mater Interfaces ; 8(3): 1742-51, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26771274

RESUMO

Organic bulk heterojunction (BHJ) solar cells are a promising alternative for future clean-energy applications. However, to become attractive for consumer applications, such as wearable, flexible, or semitransparent power-generating electronics, they need to be manufactured by high-throughput, low-cost, large-area-capable printing techniques. However, most research reported on BHJ solar cells is conducted using spin coating, a single batch fabrication method, thus limiting the reported results to the research lab. In this work, we investigate the morphology of solution-sheared films for BHJ solar cell applications, using the widely studied model blend P3HT:PCBM. Solution shearing is a coating technique that is upscalable to industrial manufacturing processes and has demonstrated to yield record performance organic field-effect transistors. Using grazing incident small-angle X-ray scattering, grazing incident wide-angle X-ray scattering, and UV-vis spectroscopy, we investigate the influence of solvent, film drying time, and substrate temperature on P3HT aggregation, conjugation length, crystallite orientation, and PCBM domain size. One important finding of this study is that, in contrast to spin-coated films, the P3HT molecular orientation can be controlled by the substrate chemistry, with PEDOT: PSS substrates yielding face-on orientation at the substrate-film interface, an orientation highly favorable for organic solar cells.

16.
Adv Mater ; 27(16): 2656-62, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25788393

RESUMO

Dense alignment of single-walled carbon nanotubes over a large area is demonstrated using a novel solution-shearing technique. A density of 150-200 single-walled carbon nanotubes per micro-meter is achieved with a current density of 10.08 µA µm(-1) at VDS = -1 V. The on-current density is improved by a factor of 45 over that of random-network single-walled carbon nanotubes.

17.
Adv Mater ; 26(3): 487-93, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24133041

RESUMO

Patterns composed of solvent wetting and dewetting regions promote lateral confinement of solution-sheared and lattice-strained TIPS-pentacene crystals. This lateral confinement causes aligned crystal growth, and the smallest patterns of 0.5 µm wide solvent wetting regions promotes formation of highly strained, aligned, and single-crystalline TIPS-pentacene regions with mobility as high as 2.7 cm(2) V(-1) s(-1) .

18.
Nat Commun ; 5: 3005, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24398476

RESUMO

Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43 cm(2) Vs(-1) (25 cm(2) Vs(-1) on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of >90% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics.

19.
Nat Commun ; 5: 3573, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24736391

RESUMO

A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes.


Assuntos
Cristalização , Compostos de Organossilício , Semicondutores , Cristalografia por Raios X , Eletrônica , Imagem Óptica
20.
ACS Appl Mater Interfaces ; 5(7): 2337-41, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23446111

RESUMO

Fullerene (C60) is a well-known n-channel organic semiconductor. We demonstrate that p-channel C60 field-effect transistors are possible by doping with molybdenum trioxide (MoO3). The device performance of the p-channel C60 field-effect transistors, such as mobility, threshold voltage, and on/off ratio is varied in a controlled manner by changing doping concentration. This work demonstrates the utility of charge transfer doping to obtain both n- and p-channel field-effect transistors with a single organic semiconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA