Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 41(4): 413-422, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37132285

RESUMO

Since late December 2019, coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been rapidly spread across the globe. The early, safe, sensitive, and accurate diagnosis of viral infection is required to decrease and control contagious infection and improve public health surveillance. The diagnosis generally is made by detecting SARS-CoV-2-related agents, including a range of nucleic acid detection-based, immunoassay-based, radiographic-based, and biosensor-based methods. This review presents the progress of various detection tools for diagnosing COVID-19 and addresses the advantages and restrictions of each detection method. Given that diagnosis of a contagious various like SARS-COV-2 can improve patient survival rates and break the transmission chain, there is no surprise that significant efforts should be made to reduce the limitations of tests that lead to false-negative results and to develop a substantial test for COVID-19 diagnosis.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19
2.
Cell Biochem Funct ; 41(5): 517-541, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37282756

RESUMO

Hyperglycemia, a distinguishing feature of diabetes mellitus that might cause a diabetic foot ulcer (DFU), is an endocrine disorder that affects an extremely high percentage of people. Having a comprehensive understanding of the molecular mechanisms underlying the pathophysiology of diabetic wound healing can help researchers and developers design effective therapeutic strategies to treat the wound healing process in diabetes patients. Using nanoscaffolds and nanotherapeutics with dimensions ranging from 1 to 100 nm represents a state-of-the-art and viable therapeutic strategy for accelerating the wound healing process in diabetic patients, particularly those with DFU. Nanoparticles can interact with biological constituents and infiltrate wound sites owing to their reduced diameter and enhanced surface area. Furthermore, it is noteworthy that they promote the processes of vascularization, cellular proliferation, cell signaling, cell-to-cell interactions, and the formation of biomolecules that are essential for effective wound healing. Nanomaterials possess the ability to effectively transport and deliver various pharmacological agents, such as nucleic acids, growth factors, antioxidants, and antibiotics, to specific tissues, where they can be continuously released and affect the wound healing process in DFU. The present article elucidates the ongoing endeavors in the field of nanoparticle-mediated therapies for the management of DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Nanopartículas , Humanos , Pé Diabético/tratamento farmacológico , Cicatrização , Peptídeos e Proteínas de Sinalização Intercelular , Nanopartículas/uso terapêutico , Nanotecnologia , Diabetes Mellitus/tratamento farmacológico
3.
Mol Biol Rep ; 49(4): 3167-3175, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35076851

RESUMO

BACKGROUND: Stem cell therapy is developing as a valuable therapeutic trend for heart diseases. Most recent studies are aimed to find the most appropriate types of stem cells for the treatment of myocardial infarction (MI). The animal models have shown that bone marrow-derived mesenchymal stem cells (BMSCs) are a possible, safe, and efficient type of stem cell used in MI. The previous study demonstrated that 5-Azacytidine (5-Aza) could promote cardiac differentiation in stem cells. METHODS: This study used 5-Aza to induce cardiomyocyte differentiation in BMSCs both in static and microfluidic cell culture systems. For this purpose, we investigated the differentiation by using real-time PCR and Immunocytochemistry (ICC) Analysis. RESULTS: Our results showed that 5-Aza could cause to express cardiac markers in BMSCs as indicated by real-time PCR and immunocytochemistry (ICC). However, BMSCs are exposed to both 5-Aza and shear stress, and their synergistic effects could significantly induce cardiac gene expressions in BMSCs. This level of gene expression was observed neither in 5-Aza nor in shear stress groups only. CONCLUSIONS: These results demonstrate that when BMSCs expose to 5-Aza as well as mechanical cues such as shear stress, the cardiac gene expression can be increased dramatically.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
4.
Mol Biol Rep ; 49(2): 1389-1412, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34716502

RESUMO

Currently, nanoscale materials and scaffolds carrying antitumor agents to the tumor target site are practical approaches for cancer treatment. Immunotherapy is a modern approach to cancer treatment in which the body's immune system adjusts to deal with cancer cells. Immuno-engineering is a new branch of regenerative medicine-based therapies that uses engineering principles by using biological tools to stimulate the immune system. Therefore, this branch's final aim is to regulate distribution, release, and simultaneous placement of several immune factors at the tumor site, so then upgrade the current treatment methods and subsequently improve the immune system's handling. In this paper, recent research and prospects of nanotechnology-based cancer immunotherapy have been presented and discussed. Furthermore, different encouraging nanotechnology-based plans for targeting various innate and adaptive immune systems will also be discussed. Due to novel views in nanotechnology strategies, this field can address some biological obstacles, although studies are ongoing.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Humanos , Sistema Imunitário , Fatores Imunológicos/uso terapêutico , Nanopartículas/administração & dosagem , Nanotecnologia/métodos , Neoplasias/imunologia
5.
Adv Exp Med Biol ; 1312: 19-37, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33159303

RESUMO

The first isolation of human embryonic stem cells (hESC) reported in the late 90s opened a new window to promising possibilities in the fields of human developmental biology and regenerative medicine. Subsequently, the differentiation of hESC lines into different precursor cells showed their potential in treating different incurable diseases. However, this promising field has consistently had remarkable ethical and experimental limitations. This paper is a review of clinical trial studies dealing with hESC and their advantages, limitations, and other specific concerns. Some of the hESC limitations have been solved, and several clinical trial studies are ongoing so that recent clinical trials have strived to improve the clinical applications of hESC, especially in macular degeneration and neurodegenerative diseases. However, regarding hESC-based therapy, several important issues need more research and discussion. Despite considerable studies to Date, hESC-based therapy is not available for conventional clinical applications, and more studies and data are needed to overcome current clinical and ethical limitations. When all the limitations of Embryonic stem cells (ESC) are wholly resolved, perhaps hESC can become superior to the existing stem cell sources. This overview will be beneficial for understanding the standard and promising applications of cell and tissue-based therapeutic approaches and for developing novel therapeutic applications of hESC.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Humanas , Diferenciação Celular , Linhagem Celular , Ensaios Clínicos como Assunto , Humanos , Medicina Regenerativa
6.
Adv Exp Med Biol ; 1347: 83-113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33931833

RESUMO

PURPOSE: This systematic review focus on the application of bilayer scaffolds as an engaging structure for the engineering of multilayered tissues, including vascular and osteochondral tissues, skin, nerve, and urinary bladder. This article provides a concise literature review of different types of bilayer scaffolds to understand their efficacy in targeted tissue engineering. METHODS: To this aim, electronic search in the English language was performed in PMC, NBCI, and PubMed from April 2008 to December 2019 based on the PRISMA guidelines. Animal studies, including the "bilayer scaffold" and at least one of the following items were examined: osteochondral tissue, bone, skin, neural tissue, urinary bladder, vascular system. The articles which didn't include "tissue engineering" and just in vitro studies were excluded. RESULTS: Totally, 600 articles were evaluated; related articles were 145, and 35 full-text English articles met all the criteria. Fifteen articles in soft tissue engineering and twenty items in hard tissue engineering were the results of this exploration. Based on selected papers, it was revealed that the bilayer scaffolds were used in the regeneration of the multilayered tissues. The highest multilayered tissue regeneration has been achieved when bilayer scaffolds were used with mesenchymal stem cells and differentiation medium before implanting. Among the studies being reported in this review, bone marrow mesenchymal stem cells are the most studied mesenchymal stem cells. Among different kinds of multilayer tissue, the bilayer scaffold has been most used in osteochondral tissue engineering in which collagen and PLGA have been the most frequently used biomaterials. After osteochondral tissue engineering, bilayer scaffolds were widely used in skin tissue engineering. CONCLUSION: The current review aimed to manifest the researcher and surgeons to use a more sophisticated bilayer scaffold in combinations of appropriate stem cells, and different can improve multilayer tissue regeneration. This systematic review can pave a way to design a suitable bilayer scaffold for a specific target tissue and conjunction with proper stem cells.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Animais , Diferenciação Celular , Medicina Regenerativa , Alicerces Teciduais
7.
Adv Exp Med Biol ; 1247: 89-100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31974923

RESUMO

Currently, regenerative medicine and cellular-based therapy have been in the center of attention worldwide in advanced medical technology. Mesenchymal stem cell (MSC) as a suitable stem cell source for cell-based therapy has been shown to be safe and effective in multiple clinical trial studies (CTSs) of several diseases. Despite the advantages, MSC needs more investigation to enhance its therapeutic application. The CRISPR/Cas system is a novel technique for editing of genes that is being explored as a means to improve MSCs therapeutic usage. In this study, we review the recent studies that explore CRISPR potency in gene engineering of MSCs, which have great relevance in MSC-based therapies. However, CRISPR/Cas technology make possible specific targeting of loci in target genes, but next-generation MSC-based therapies to achieve extensive clinical application need dedicated efforts.


Assuntos
Sistemas CRISPR-Cas , Ensaios Clínicos como Assunto , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Edição de Genes , Humanos , Medicina Regenerativa
8.
Adv Exp Med Biol ; 1237: 75-95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31302869

RESUMO

Cellular-based therapies have drawn a great deal of attention thanks to their regenerative medicine approaches to treat incurable diseases and specific injuries. In this regard, injectable cell delivery systems could actualize the therapeutically beneficial outcomes of cell-based therapeutic products. These systems have found considerable clinical uses. Hence, the recent studies have focused on developing injectable bio-constructs to protect transplanted cells during delivery and stimulating endogenous regeneration through interactions of these cells and host tissue. This paper introduces a framework, as a general concept, to improve cell delivery systems for cell-based therapeutic products. Studies on stable injectable carriers can enhance cell homing, proliferation, viability, dressing of irregular shape of target sites, and subsequently support transplanted cell functionality. However, more studies should be conducted on new technologies for the injectable cell-based product for cell delivery and the clinical applications.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/tendências , Medicina Regenerativa/tendências , Qualidade de Produtos para o Consumidor , Humanos
9.
J Cell Biochem ; 120(9): 15410-15421, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31069851

RESUMO

Electrospun composite scaffolds show high ability to be used in regenerative medicine and drug delivery, due to the nanofibrous structure and high surface area to volume ratio. In this study, we used nanofibrous scaffolds fabricated by chitosan (CS), poly(vinyl alcohol) (PVA), carbopol, and polycaprolactone using a dual electrospinning technique while curcumin (Cur) incorporated inside of the CS/PVA fibers. Scaffolds were fully characterized via scanning electron microscopy, water contact angle, tensile measurement, hydration, protein adsorption, and wrinkled tests. Furthermore, viability of the buccal fat pad-derived mesenchymal stem cells (BFP-MSCs) was also investigated using MTT assay for up to 14 days while cultured on these scaffolds. Cell cycle assay was also performed to more detailed evaluation of the stem cells growth when grown on scaffolds (with and without Cur) compared with the culture plate. Results demonstrated that Cur loaded nanofibrous scaffold had more suitable capability for water absorption and mechanical properties compared with the scaffold without Cur and it could also support the stem cells viability and proliferation. Cur release profile showed a decreasing effect on BFP-MSCs viability in the initial stage, but it showed a positive effect on stem cell viability in a long-term manner. In general, the results indicated that this nanofibrous scaffold has great potential as a delivery of the Cur and BFP-MSCs simultaneously, and so holds the promising potential for use in various regenerative medicine applications.


Assuntos
Quitosana/química , Curcumina/farmacologia , Células-Tronco Mesenquimais/citologia , Álcool de Polivinil/química , Resinas Acrílicas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Curcumina/química , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras , Poliésteres/química , Medicina Regenerativa , Alicerces Teciduais
10.
J Cell Physiol ; 233(10): 6509-6522, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29719054

RESUMO

Since bone tissue lesions caused by several reasons and has global outbreak without any attentions to the modernity level of the countries. In the other hands treatment of patients with this problem faced to the several limitations, in this because the future of the bone lesions treatments is related to the future of the bone tissue engineering. This review tries to cover the most suitable stem cells and materials from either natural or synthetic sources for bone tissue engineering. These understanding points would help researchers to further uncover the application of different adult stem cell sources in electrospinning scaffolds, promotion of nanofibrous composite construct design and adult stem cell type selection to enhance cell function and bone tissue engineering, and link laboratory investigations to clinical applications.


Assuntos
Células-Tronco Adultas/transplante , Osso e Ossos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Engenharia Tecidual , Células-Tronco Adultas/química , Desenvolvimento Ósseo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Nanofibras/química , Nanofibras/uso terapêutico , Alicerces Teciduais/química
11.
J Cell Biochem ; 119(7): 5043-5052, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29377240

RESUMO

Despite important advances in regenerative medicine and tissue engineering, still, wound healing remains a challenging clinical problem. Cell therapy has opened a new viewpoint in medicine as well as wound management, although it has some limitations. On the other hand, there are some hopes for the eliminated of cellular therapies limitations by "exosomes." The term "exosome" has been frequently used to describe all vesicles released by different cells into the extracellular environment and can influence tissue responses to injury, infection, immune system, and healing. Exosomes contain cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs that have been found in some body fluids and can be transferred between cells to mediating cell-to-cell communication and interactions. Recently, several studies have demonstrated that exosomes are one of the key secretory products of various cell type especially mesenchymal stem cells (MSCs) to regulate many biological processes such wound healing. Hence, understanding these exosomes effects may help to improve wound management and highlight a new therapeutic model for cell-free therapies with decreased side effects for the wound repair.


Assuntos
Exossomos/metabolismo , Cicatrização/fisiologia , Animais , Comunicação Celular/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo
12.
Adv Exp Med Biol ; 1119: 103-118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155859

RESUMO

Regenerative medicine (RM) is a promising new field of medicine that has mobilized several new tools to repair or replace lost or damaged cells or tissues by stimulating natural regenerative mechanisms nearby cell and tissue-based therapy approaches. However, mesenchymal stem cell (MSC) based therapy has been shown to be safe and effective to a certain degree in multiple clinical trial studies (CTSs) of several diseases, in most MSC CTSs the efficacy of treatment has been reported low. Therefore, researchers have focused on efficacy enhancing of MSC to improve migratory and homing, survival, stemness, differentiation and other therapeutic applicable properties by using different approaches. Gene therapy is one of the experimental technique tools that uses genes to change cells for therapeutic and investigation purposes. In this study has been focused on genetically modified MSCs for use in RM with an emphasis on CTSs. We highlight the basic concept of genetic modifications and also discuss recent clinical studies aspects. Recently reviewed studies show that MSC therapy with assistant gene therapy can be used in cancer therapy, heart diseases, Fanconi anemia and several other diseases.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Terapia Genética , Medicina Regenerativa
13.
Med Mol Morphol ; 51(1): 1-12, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29170827

RESUMO

In more than one decade, cell transplantation has created an important strategy to treat a wide variety of diseases characterized by tissue and cell dysfunctions. In this course of action, cell delivery to target site has been always one of the most important constraints and complications, as only a small proportion of the cells are housed in the target sites. Nanotechnology and nanoscale biomaterials have been helpful for cell transplantation in various fields of regenerative medicine including diagnosis, delivery systems for the cell, drug or gene, and cells protection system. In this study, the basic concepts and recently studied aspects of cell delivery systems based on nanoscale biomaterials for transplantation and clinical applications are highlighted. Nanomaterials may be used in combination with cell therapy to control the release of drugs or special factors of engineered cells after transplantation.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/tendências , Nanoestruturas/uso terapêutico , Medicina Regenerativa/tendências , Transplante/tendências , Humanos
14.
Reprod Toxicol ; 125: 108575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462211

RESUMO

The generally undesired effects of exocannabinoids on male reproduction include alterations in testicular cell proliferation and function, as well as apoptosis induction. However, this paradigm has been challenged by the ability of endocannabinoids to regulate reproductive function. The present study addresses these paradoxical facts by investigating the effects of the endocannabinoid 2-arachidonoyl glycerol (2-AG) on mouse Sertoli cells' survival and apoptosis, with a mechanistic insight into Sertoli cell-based growth factors' production. The Mus musculus Sertoli cell line (TM4) was exposed to different concentrations of 2-AG, and cell viability was evaluated using MTT assay. Growth factors' gene and protein expressions were analyzed through RT-PCR and western blotting. 2-AG concentration dependently increased TM4 viability, with a slight increase starting at 0.0001 µM, a peak of 190% of the control level at 1 µM, and a decrease at 3 µM. Moreover, 2-AG paradoxically altered mRNA expression of caspase-3 and growth factors. Caspase-3 mRNA expression was down-regulated, and growth factors mRNA and protein expression were up-regulated when using a low concentration of 2-AG (1 µM). Opposite effects were observed by a higher concentration of 2-AG (3 µM). These paradoxical effects of 2-AG can be explained through the concept of hormesis. The results indicate the pivotal role of 2-AG in mediating Sertoli cell viability and apoptosis, at least in part, through altering growth factors secretion. Furthermore, they suggest the involvement of endocannabinoids in Sertoli cell-based physiological and pathological conditions and reflect the ability of abnormally elevated 2-AG to mimic the actions of exocannabinoids in reproductive dysfunction.


Assuntos
Canabinoides , Endocanabinoides , Camundongos , Animais , Masculino , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Células de Sertoli , Caspase 3/metabolismo , Glicerol/metabolismo , Glicerol/farmacologia , Hormese , Sobrevivência Celular , Apoptose , RNA Mensageiro/metabolismo , Fertilidade , Células Cultivadas
15.
Artigo em Inglês | MEDLINE | ID: mdl-38243989

RESUMO

Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing from the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.

16.
BMC Pharmacol Toxicol ; 24(1): 61, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946285

RESUMO

The potentially adverse effects of cannabis (marijuana), a common leisure compound, on male reproductive performance are a reason for concern. δ-9-tetrahydrocannabinol (THC), the primary active component of marijuana alters testicular cells' proliferation and function which affects male fertility and causes testicular cells dysfunction and apoptosis. The main objective of this study was to investigate the possible mechanism underlying the toxic effects of THC with a mechanistic insight into Sertoli cell-based reproductive dysfunction. The Mus musculus Sertoli cell line (TM4) was cultured and exposed to different concentrations of THC and, MTT (3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was then performed for evaluating cell viability. The expression of caspase-3 gene and genes related to growth factors were analyzed by real-time RT-PCR. Western blotting was performed for evaluating protein expression level. THC concentration-dependently decreased the TM4 viability with a significant effect starting at concentration of 1 µM and reaching about 75% of the control level at the concentration of 50 µM (IC25). Moreover, caspase-3 mRNA expression levels significantly increased while growth factors mRNA levels decreased in THC-exposed cells compared to unexposed cells. There was also a significant reduction in related protein levels in THC group. Administration of the THC promotes cytotoxic and apoptotic effects on TM4 cells partly through down-regulation of growth factors expression. Increased apoptosis, over expression of caspase-3, and down-regulation of growth factors expression in Sertoli cells exposed to THC may be a reflection of THC-induced testicular toxicity, which may be partly involved in infertility associated with marijuana smoking or medical cannabis use.


Assuntos
Canabinoides , Cannabis , Masculino , Camundongos , Animais , Dronabinol/toxicidade , Dronabinol/metabolismo , Células de Sertoli/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Sobrevivência Celular , Cannabis/toxicidade , RNA Mensageiro/metabolismo
17.
Curr Stem Cell Res Ther ; 18(6): 800-828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545723

RESUMO

Concurrent with the global outbreak of COVID-19, the race began among scientists to generate effective therapeutics for the treatment of COVID-19. In this regard, advanced technology such as nanotechnology, cell-based therapies, tissue engineering and regenerative medicine, nerve stimulation and artificial intelligence (AI) are attractive because they can offer new solutions for the prevention, diagnosis and treatment of COVID-19. Nanotechnology can design rapid and specific tests with high sensitivity for detecting infection and synthases new drugs and vaccines based on nanomaterials to directly deliver the intended antiviral agent to the desired site in the body and also provide new surfaces that do not allow virus adhesion. Mesenchymal stem cells and exosomes secreted from them apply in regenerative medicine and regulate inflammatory responses. Cell therapy and tissue engineering are combined to repair or substitute damaged tissues or cells. Tissue engineering using biomaterials, cells, and signaling molecules can develop new therapeutic and diagnostic platforms and help scientists fight viral diseases. Nerve stimulation technology can augment body's natural ability to modulate the inflammatory response and inhibit pro-inflammatory cytokines and consequently suppress cytokine storm. People can access free online health counseling services through AI and it helps very fast for screening and diagnosis of COVID-19 patients. This study is aimed first to give brief information about COVID-19 and the epidemiology of the disease. After that, we highlight important developments in the field of advanced technologies relevant to the prevention, detection, and treatment of the current pandemic.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Inteligência Artificial , Tecnologia , Nanotecnologia
18.
Biomed Pharmacother ; 167: 115505, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716113

RESUMO

Mesenchymal stem cells (MSCs), as self-renewing multipotent stromal cells, have been considered promising agents for cancer treatment. A large number of studies have demonstrated the valuable properties of MSC-based treatment, such as low immunogenicity and intrinsic tumor-trophic migratory properties. To enhance the potency of MSCs for therapeutic purposes, equipping MSCs with targeted delivery functions using genetic engineering is highly beneficial. Genetically engineered MSCs can express tumor suppressor agents such as pro-apoptotic, anti-proliferative, anti-angiogenic factors and act as ideal delivery vehicles. MSCs can also be loaded with nanoparticle drugs for increased efficacy and externally moderated targeting. Moreover, exosomes secreted by MSCs have important physiological properties, so they can contribute to intercellular communication and transfer cargo into targeted tumor cells. The precise role of genetically modified MSCs in tumor environments is still up for debate, but the beginning of clinical trials has been confirmed by promising results from preclinical investigations of MSC-based gene therapy for a wide range of malignancies. This review highlights the advanced techniques of engineering/nano-engineering and MSC-derived exosomes in tumor-targeted therapy.

19.
Curr Stem Cell Res Ther ; 18(6): 787-799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36200213

RESUMO

Breast cancer stem cells (BCSCs) are heterogeneous tumor-initiating cell subgroups of breast cancers that possess some stem cell markers and are sustained after chemotherapy. Due to BCSCs being sufficient for tumor relapse, and given that the biological behaviors of BCSCs are so complex, it is critical to figure out exactly how they work, learn more about their cell biology, and discover biomarkers and strategies for explicitly targeting and destructing cancer stem cells. In order to accomplish innovative treatment for breast cancer, it is also essential to target BCSCs. Despite the vast quantities of BCSC target chemicals, their therapeutic implementation is limited due to off-target behavior and bioavailability issues. Targeted drug delivery systems based on nanoparticles have advantages for transporting anti-BCSC materials, especially to targeted locations. Hence, breast cancer therapy using a nanoparticle-based BCSCs targeting system is a promising strategy. Such targeted drug delivery systems can resolve the biodistribution obstacles of nanosystems. Throughout this paper, we highlight various strategies for targeting BCSCs utilizing nano-based systems. In conclusion, issues about the inadequate stability of nanoparticles and the possibility of loaded drug leakage during delivery systems have yet to be answered. More fundamental and applied research, and proper methods such as coating or surface modification are required.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Distribuição Tecidual , Nanopartículas/uso terapêutico , Células-Tronco Neoplásicas/metabolismo
20.
Regen Med ; 18(8): 635-657, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37492007

RESUMO

Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.


Tissue engineering and regenerative medicine can design processes or products to restore, repair, or replace injured or diseased cells, tissues or organs. It contains the generation and making use of therapeutic stem cells, and engineered scaffolds for the manufacture of artificial organs. This field focuses on the development and application of new treatments to heal tissues and organs as well as repair functions lost due to damage, defects, disease or aging. The World Health Organization has described probiotics as "live microorganisms that, when administered in sufficient amounts, confer a health advantage on the host". Probiotics are found naturally in certain foods, such as kimchi and fermented yogurt. They are also found in your gut, where they partake in a type of important bodily processes, such as vitamin production, digestion, mood regulation, and immune function. Probiotics with their suitable pro-healing effects on different systems of the body can be used in regenerative medicine. Probiotic bacteria induce their beneficial effects via proven mechanisms including pathogens killing, modulating the gut microbiota, immunomodulatory effects, and anti-diabetic, anti-obesity and anti-cancer functions. Moreover, recent studies indicated that probiotics could neutralize infections caused by COVID-19. Probiotics are healthy microorganisms that exert multiple positive effects on human health, especially through the battle against pathogens and repairing different types of body tissues.


Assuntos
Probióticos , Medicina Regenerativa , Engenharia Tecidual , Materiais Biocompatíveis , Cicatrização , Humanos , Microbiota , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA