Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10675-10684, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843196

RESUMO

Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.


Assuntos
Aerossóis , Compostos de Epóxi/química , Concentração de Íons de Hidrogênio , Equilíbrio Ácido-Base
2.
Chem Res Toxicol ; 36(11): 1814-1825, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37906555

RESUMO

Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway-related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10).


Assuntos
Butadienos , Estresse Oxidativo , Humanos , Idoso , Espécies Reativas de Oxigênio , Oxirredução , Butadienos/toxicidade
3.
J Phys Chem A ; 127(18): 4125-4136, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37129903

RESUMO

The phase states and glass transition temperatures (Tg) of secondary organic aerosol (SOA) particles are important to resolve for understanding the formation, growth, and fate of SOA as well as their cloud formation properties. Currently, there is a limited understanding of how Tg changes with the composition of organic and inorganic components of atmospheric aerosol. Using broadband dielectric spectroscopy, we measured the Tg of organic mixtures containing isoprene epoxydiol (IEPOX)-derived SOA components, including 2-methyltetrols (2-MT), 2-methyltetrol-sulfate (2-MTS), and 3-methyltetrol-sulfate (3-MTS). The results demonstrate that the Tg of mixtures depends on their composition. The Kwei equation, a modified Gordon-Taylor equation with an added quadratic term and a fitting parameter representing strong intermolecular interactions, provides a good fit for the Tg-composition relationship of complex mixtures. By combining Raman spectroscopy with geometry optimization simulations obtained using density functional theory, we demonstrate that the non-linear deviation of Tg as a function of composition may be caused by changes in the extent of hydrogen bonding in the mixture.

4.
Environ Sci Technol ; 56(23): 16611-16620, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36378716

RESUMO

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM2.5). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (•OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase •OH exposure (∼3 × 108 molecules cm-3), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without •OH revealed that decomposition of oligomers by heterogeneous •OH oxidation acts as a sink for •OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM2.5. Our results suggest that this •OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM2.5.


Assuntos
Poluentes Atmosféricos , Sulfatos , Sulfatos/química , Atmosfera/química , Hemiterpenos , Butadienos , Aerossóis/química , Material Particulado/análise , Poeira/análise , Oxirredução , Estresse Oxidativo , Poluentes Atmosféricos/análise
5.
Environ Sci Technol ; 56(15): 10596-10607, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35834796

RESUMO

Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.


Assuntos
Atmosfera , Hemiterpenos , Ácidos/química , Aerossóis/química , Atmosfera/química , Butadienos , Concentração de Íons de Hidrogênio
6.
J Phys Chem A ; 126(35): 5974-5984, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36017944

RESUMO

Organosulfates formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions can account for >15% of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. However, fundamental understanding of organosulfate molecular structures is limited, particularly at atmospherically relevant acidities (pH = 0-6). Herein, for 2-methyltetrol sulfates (2-MTSs), an important group of isoprene-derived organosulfates, protonation state and vibrational modes were studied using Raman and infrared spectroscopy, as well as density functional theory (DFT) calculations of vibrational spectra for neutral (RO-SO3H) and anionic/deprotonated (RO-SO3-) structures. The calculated sulfate group vibrations differ for the two protonation states due to their different sulfur-oxygen bond orders (1 or 2 versus 12/3 for the neutral and deprotonated forms, respectively). Only vibrations at 1060 and 1041 cm-1, which are associated with symmetric S-O stretches of the 2-MTS anion, were observed experimentally with Raman, while sulfate group vibrations for the neutral form (∼900, 1200, and 1400 cm-1) were not observed. Additional calculations of organosulfates formed from other SOA-precursor gases (α-pinene, ß-caryophyllene, and toluene) identified similar symmetric vibrations between 1000 and 1100 cm-1 for RO-SO3-, consistent with corresponding organosulfates formed during laboratory experiments. These results suggest that organosulfates are primarily deprotonated at atmospheric pH values, which have further implications for aerosol acidity, heterogeneous reactions, and continuing chemistry in atmospheric aerosols.


Assuntos
Sulfatos , Enxofre , Aerossóis/química , Teoria da Densidade Funcional , Oxirredução , Sulfatos/química
7.
Chem Res Toxicol ; 33(2): 381-387, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31765140

RESUMO

Exposure to fine particulate matter (PM2.5), of which secondary organic aerosol (SOA) is a major constituent, is linked to adverse health outcomes, including cardiovascular disease, lung cancer, and preterm birth. Atmospheric oxidation of isoprene, the most abundant nonmethane hydrocarbon emitted into Earth's atmosphere primarily from vegetation, contributes to SOA formation. Isoprene-derived SOA has previously been found to alter inflammatory/oxidative stress genes. MicroRNAs (miRNAs) are epigenetic regulators that serve as post-transcriptional modifiers and key mediators of gene expression. To assess whether isoprene-derived SOA alters miRNA expression, BEAS-2B lung cells were exposed to laboratory-generated isoprene-derived SOA constituents derived from the acid-driven multiphase chemistry of authentic methacrylic acid epoxide (MAE) or isomeric isoprene epoxydiols (IEPOX) with acidic sulfate aerosol particles. These IEPOX- and MAE-derived SOA constituents have been shown to be measured in large quantities within PM2.5 collected from isoprene-rich areas affected by acidic sulfate aerosol particles derived from human activities. A total of 29 miRNAs were identified as differentially expressed when exposed to IEPOX-derived SOA and 2 when exposed to MAE-derived SOA, a number of which are inflammatory/oxidative stress associated. These results suggest that miRNAs may modulate the inflammatory/oxidative stress response to SOA exposure, thereby advancing the understanding of airway cell epigenetic response to SOA.


Assuntos
Butadienos/farmacologia , Hemiterpenos/farmacologia , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Aerossóis/química , Aerossóis/farmacologia , Butadienos/química , Células Cultivadas , Hemiterpenos/química , Humanos , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , MicroRNAs/metabolismo , Estrutura Molecular
8.
Environ Res ; 187: 109627, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417507

RESUMO

BACKGROUND: Dietary intake of the omega-3 family of polyunsaturated fatty acids (ω-3 FA) is associated with anti-inflammatory effects. However, unsaturated fatty acids are susceptible to oxidation, which produces pro-inflammatory mediators. Ozone (O3) is a tropospheric pollutant that reacts rapidly with unsaturated fatty acids to produce electrophilic and oxidative mediators of inflammation. OBJECTIVE: Determine whether supplementation with ω-3 FA alters O3-induced oxidative stress in human airway epithelial cells (HAEC). METHODS: 16-HBE cells expressing a genetically encoded sensor of the reduced to oxidized glutathione ratio (GSH/GSSG, EGSH) were supplemented with saturated, monounsaturated, or ω-3 FA prior to exposure to 0, 0.08, 0.1, or 0.3 ppm O3. Lipid peroxidation was measured in cellular lipid extracts and intact cells following O3 exposure. RESULTS: Relative to cells incubated with the saturated or monounsaturated fatty acids, cells supplemented with ω-3 FA containing 5 or 6 double bonds showed a marked increase in EGSH during exposure to O3 concentrations as low as 0.08 ppm. Consistent with this finding, the concentration of lipid hydroperoxides produced following O3 exposure was significantly elevated in ω-3 FA supplemented cells. DISCUSSION: Supplementation with polyunsaturated ω-3 FA potentiates oxidative responses, as indicated by EGSH, in HAEC exposed to environmentally relevant concentrations of O3. This effect is mediated by the increased formation of lipid hydroperoxides produced by the reaction of O3 with polyunsaturated fatty acids. Given the inflammatory activity of lipid hydroperoxides, these findings have implications for the potential role of ω-3 FA in increasing human susceptibility to the adverse health effects of O3 exposure.


Assuntos
Ácidos Graxos Ômega-3 , Ozônio , Suplementos Nutricionais , Células Epiteliais , Ácidos Graxos , Humanos , Estresse Oxidativo , Ozônio/toxicidade
9.
Environ Sci Technol ; 53(21): 12366-12378, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31490675

RESUMO

Glass transitions of secondary organic aerosols (SOA) from liquid/semisolid to solid phase states have important implications for aerosol reactivity, growth, and cloud formation properties. In the present study, glass transition temperatures (Tg) of isoprene SOA components, including isoprene hydroxy hydroperoxide (ISOPOOH), isoprene-derived epoxydiols (IEPOX), 2-methyltetrols, and 2-methyltetrol sulfates, were measured at atmospherically relevant cooling rates (2-10 K/min) by thin film broadband dielectric spectroscopy. The results indicate that 2-methyltetrol sulfates have the highest glass transition temperature, while ISOPOOH has the lowest glass transition temperature. By varying the cooling rate of the same compound from 2 to 10 K/min, the Tg of these compounds increased by 4-5 K. This temperature difference leads to a height difference of 400-800 m in the atmosphere for the corresponding updraft induced cooling rates, assuming a hygroscopicity value (κ) of 0.1 and relative humidity less than 95%. The Tg of the organic compounds was found to be strongly correlated with volatility, and a semiempirical formula between glass transition temperatures and volatility was derived. The Gordon-Taylor equation was applied to calculate the effect of relative humidity (RH) and water content at five mixing ratios on the Tg of organic aerosols. The model shows that Tg could drop by 15-40 K as the RH changes from <5 to 90%, whereas the mixing ratio of water in the particle increases from 0 to 0.5. These results underscore the importance of chemical composition, updraft rates, and water content (RH) in determining the phase states and hygroscopic properties of organic particles.


Assuntos
Atmosfera , Espectroscopia Dielétrica , Aerossóis , Transição de Fase , Volatilização
10.
Environ Sci Technol ; 53(15): 8682-8694, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31335134

RESUMO

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this article, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX/Sulfinorg), as determined by laboratory measurements. Characterization of the total sulfur aerosol observed at Look Rock, Tennessee, from 2007 to 2016 shows that organosulfur mass fractions will likely continue to increase with ongoing declines in anthropogenic Sulfinorg, consistent with our laboratory findings. We further demonstrate that organosulfur compounds greatly modify critical aerosol properties, such as acidity, morphology, viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO2 emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA physicochemical properties. Consequently, IEPOX/Sulfinorg will play an important role in understanding the historical climate and determining future impacts of biogenic SOA on the global climate and air quality.


Assuntos
Atmosfera , Pentanos , Aerossóis , Butadienos , Hemiterpenos , Sulfatos , Tennessee
11.
J Phys Chem A ; 122(1): 303-315, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29219314

RESUMO

Isoprene, the most abundant biogenic volatile organic compound (BVOC) in the atmosphere, and its low-volatility oxidation products lead to secondary organic aerosol (SOA) formation. Isoprene-derived organosulfates formed from reactions of isoprene oxidation products with sulfate in the particle phase are a significant component of SOA and can hydrolyze forming polyols. Despite characterization by mass spectrometry, their basic structural and spectroscopic properties remain poorly understood. Herein, Raman microspectroscopy and density functional theory (DFT) calculations (CAM-B3LYP level of theory) were combined to analyze the vibrational modes of key organosulfates, 3-methyltetrol sulfate esters (racemic mixture of two isomers), and racemic 2-methylglyceric acid sulfate ester, and hydrolysis products, 2-methyltetrols, and 2-methylglyceric acid. Two intense vibrational modes were identified, ν(RO-SO3) (846 ± 4 cm-1) and νs(SO3) (1065 ± 2 cm-1), along with a lower intensity δ(SO3) mode (586 ± 2 cm-1). For 2-methylglyceric acid and its sulfate esters, deprotonation of the carboxylic acid at pH values above the pKa decreased the carbonyl stretch frequency (1724 cm-1), while carboxylate modes grew in for νs(COO-) and νa(COO-) at 1413 and 1594 cm-1, respectively. The ν(RO-SO3) and νs(SO3) modes were observed in individual atmospheric particles and can be used in future studies of complex SOA mixtures to distinguish organosulfates from inorganic sulfate or hydrolysis products.

12.
Chem Res Toxicol ; 30(3): 794-803, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28207250

RESUMO

DNA oxidation damage has been regarded as one of the possible mechanisms for the hepatic carcinogenesis of dioxin-like compounds (DLCs). In this study, we evaluated the toxic equivalency factor (TEF) from the standpoint of induced DNA oxidation products and their relationship to toxicity and carcinogenicity. Nine DNA oxidation products were analyzed in the liver of female Sprague-Dawley rats exposed to 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) alone or the tertiary mixture of TCDD, 3,3',4,4',5-pentachlorobiphenyl (PCB 126), and 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) by gavage for 14, 31, and 53 weeks (5 days/week) by LC-MS/MS: 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo); 1,N6-etheno-2'-deoxyadenosine (1,N6-εdAdo); N2,3-ethenoguanine (N2,3-εG); 7-(2-oxoethly)guanine (7-OEG); 1,N2-etheno-2'-deoxyguanosine (1,N2-εdGuo); malondialdehyde (M1dGuo); acrolein (AcrdGuo); crotonaldehyde (CrdGuo); and 4-hydroxynonenal (HNEdGuo) derived 2'-deoxyguanosine adducts. Exposure to TCDD (100 ng/kg/day) significantly induced 1,N6-εdAdo at 31 and 53 weeks, while no increase of 8-oxo-dGuo was observed. Significant increases were observed for 8-oxo-dGuo and 1,N6-εdAdo at all time points following exposure to the tertiary mixture (TEQ 100 ng/kg/day). Exposure to TCDD for 53 weeks only significantly increased 1,N6-εdAdo, while increases of N2,3-εG and 7-OEG were only found in the highest dose group (100 ng/kg/day). Exposure to the tertiary mixture for 53 weeks had no effect on N2,3-εG in any exposure group (TEQ 0, 22, 46, or 100 ng/kg/day), while significant increases were observed for 1,N6-εdAdo (all dose groups), 8-oxo-dGuo (46 and 100 ng/kg/day), and 7-OEG (100 ng/kg/day). While no significant increase was observed at 53 weeks for 1,N2-εdGuo, M1dGuo, AcrdGuo, or CrdGuo following exposure to TCDD (100 ng/kg/day), all of them were significantly induced in animals exposed to the tertiary mixture (TEQ 100 ng/kg/day). This oxidation DNA product data suggest that the simple TEF methodology cannot be applied to evaluate the diverse patterns of toxic effects induced by DLCs.


Assuntos
DNA/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Feminino , Ratos , Ratos Sprague-Dawley
13.
Environ Sci Technol ; 51(12): 7091-7100, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28510420

RESUMO

Bioremediation is an accepted technology for cleanup of soil contaminated with polycyclic aromatic hydrocarbons (PAHs), but it can increase the genotoxicity of the soil despite removal of the regulated PAHs. Although polar biotransformation products have been implicated as causative genotoxic agents, no specific product has been identified. We pursued a nontarget analytical approach combining effect-directed analysis (EDA) and metabolite profiling to compare extracts of PAH-contaminated soil from a former manufactured-gas plant site before and after treatment in a laboratory-scale aerobic bioreactor. A compound with the composition C15H8O2 and four methylated homologues were shown to accumulate as a result of bioreactor treatment, and the C15H8O2 compound purified from soil extracts was determined to be genotoxic. Its structure was established by nuclear magnetic resonance and mass spectroscopy as a heretofore unidentified α,ß-unsaturated lactone derived from dioxygenation of pyrene at an apical ring, 2H-naphtho[2,1,8-def]chromen-2-one (NCO), which was confirmed by synthesis. The concentration of NCO in the bioreactor was 11 µg g-1 dry soil, corresponding to 13% of the pyrene removed. It also accumulated in aerobically incubated soil from two additional PAH-contaminated sites and was formed from pyrene by two pyrene-degrading bacterial cultures known to be geographically widespread, underscoring its potential environmental significance.


Assuntos
Biodegradação Ambiental , Pirenos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos , Solo , Microbiologia do Solo
14.
Environ Sci Technol ; 51(14): 8166-8175, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28636383

RESUMO

Secondary organic aerosol (SOA) derived from the photochemical oxidation of isoprene contributes a substantial mass fraction to atmospheric fine particulate matter (PM2.5). The formation of isoprene SOA is influenced largely by anthropogenic emissions through multiphase chemistry of its multigenerational oxidation products. Considering the abundance of isoprene SOA in the troposphere, understanding mechanisms of adverse health effects through inhalation exposure is critical to mitigating its potential impact on public health. In this study, we assessed the effects of isoprene SOA on gene expression in human airway epithelial cells (BEAS-2B) through an air-liquid interface exposure. Gene expression profiling of 84 oxidative stress and 249 inflammation-associated human genes was performed. Our results show that the expression levels of 29 genes were significantly altered upon isoprene SOA exposure under noncytotoxic conditions (p < 0.05), with the majority (22/29) of genes passing a false discovery rate threshold of 0.3. The most significantly affected genes belong to the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor network. The Nrf2 function is confirmed through a reporter cell line. Together with detailed characterization of SOA constituents, this study reveals the impact of isoprene SOA exposure on lung responses and highlights the importance of further understanding its potential health outcomes.


Assuntos
Aerossóis/toxicidade , Butadienos/toxicidade , Perfilação da Expressão Gênica , Hemiterpenos/toxicidade , Pentanos/toxicidade , Células Epiteliais/efeitos dos fármacos , Humanos , Pulmão/citologia
15.
Environ Sci Technol ; 51(11): 5932-5940, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28445044

RESUMO

Highly oxygenated multifunctional organic compounds (HOMs) originating from biogenic emissions constitute a widespread source of organic aerosols in the pristine atmosphere. However, the molecular forms in which HOMs are present in the condensed phase upon gas-particle partitioning remain unclear. In this study, we show that highly oxygenated molecules that contain multiple peroxide functionalities are readily cationized by the attachment of Na+ during electrospray ionization operated in the positive ion mode. With this method, we present the first identification of HOMs characterized as C8-10H12-18O4-9 monomers and C16-20H24-36O8-14 dimers in α-pinene derived secondary organic aerosol (SOA). Simultaneous detection of these molecules in the gas phase provides direct evidence for their gas-to-particle conversion. Molecular properties of particulate HOMs generated from ozonolysis and OH oxidation of unsubstituted (C10H16) and deuterated (C10H13D3) α-pinene are investigated using coupled ion mobility spectrometry with mass spectrometry. The systematic shift in the mass of monomers in the deuterated system is consistent with the decomposition of isomeric vinylhydroperoxides to release vinoxy radical isotopologues, the precursors to a sequence of autoxidation reactions that ultimately yield HOMs in the gas phase. The remarkable difference observed in the dimer abundance under O3- versus OH-dominant environments underlines the competition between intramolecular hydrogen migration of peroxy radicals and their bimolecular termination reactions. Our results provide new and direct molecular-level information for a key component needed for achieving carbon mass closure of α-pinene SOA.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monoterpenos , Monoterpenos Bicíclicos , Ozônio
16.
Chem Res Toxicol ; 29(8): 1335-1344, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27436759

RESUMO

Polychlorinated biphenyls (PCBs) are organic chemicals that were traditionally produced and widely used in industry as mixtures and are presently formed as byproducts of pigment and dye manufacturing. They are known to persist and bioaccumulate in the environment. Some have been shown to induce liver cancer in rodents. Although the mechanism of the toxicity of PCBs is unknown, it has been shown that they increase oxidative stress, including lipid peroxidation. We hypothesized that oxidative stress-induced DNA damage could be a contributor for PCB carcinogenesis and analyzed several DNA adducts in female Sprague-Dawley rats exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB 126), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and a binary mixture (PCB 126 + 153) for 14, 31, and 53 wks. Eight adducts were measured to profile oxidative DNA lesions, including 8-oxo-deoxyguanosine (8-oxo-dG), 1,N(6)-ethenodeoxyadenosine (1,N(6)-εdA), N(2),3-ethenoguanine (N(2),3-εG), 1,N(2)-ethenodeoxyguanosine (1,N(2)-εdG), as well as malondialdehyde (M1dG), acrolein (AcrdG), crotonaldehyde (CrdG), and 4-hydroxynonenal-derived dG adducts (HNEdG) by LC-MS/MS analysis. Statistically significant increases were observed for 8-oxo-dG and 1,N(6)-εdA concentrations in hepatic DNA of female rats exposed to the binary mixture (1000 ng/kg/day + 1000 µg/kg/day) but not in rats exposed to PCB 126 (1000 ng/kg/day) or PCB 153 (1000 µg/kg/day) for 14 and 31 wks. However, exposure to PCB 126 (1000 ng/kg/day) for 53 wks significantly increased 8-oxo-dG, 1,N(6)-εdA, AcrdG, and M1dG. Exposure to PCB 153 (1000 µg/kg/day) for 53 wks increased 8-oxo-dG, and 1,N(6)-εdA. Exposure to the binary mixture for 53 wks increased 8-oxo-dG, 1,N(6)-εdA, AcrdG, 1,N(2)-εdG, and N(2),3-εG significantly above control groups. Increased hepatic oxidative DNA adducts following exposure to PCB 126, PCB 153, or the binary mixture shows that an increase in DNA damage may play an important role in hepatic toxicity and carcinogenesis in female Sprague-Dawley rats.


Assuntos
Adutos de DNA/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Animais , Cromatografia Líquida , Feminino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
17.
Environ Sci Technol ; 50(11): 5580-8, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27176464

RESUMO

Multiphase chemistry of isomeric isoprene epoxydiols (IEPOX) has been shown to be the dominant source of isoprene-derived secondary organic aerosol (SOA). Recent studies have reported particles composed of ammonium bisulfate (ABS) mixed with model organics exhibit slower rates of IEPOX uptake. In the present study, we investigate the effect of atmospherically relevant organic coatings of α-pinene (AP) SOA on the reactive uptake of trans-ß-IEPOX onto ABS particles under different conditions and coating thicknesses. Single particle mass spectrometry was used to characterize in real-time particle size, shape, density, and quantitative composition before and after reaction with IEPOX. We find that IEPOX uptake by pure sulfate particles is a volume-controlled process, which results in particles with uniform concentration of IEPOX-derived SOA across a wide range of sizes. Aerosol acidity was shown to enhance IEPOX-derived SOA formation, consistent with recent studies. The presence of water has a weaker impact on IEPOX-derived SOA yield, but significantly enhanced formation of 2-methyltetrols, consistent with offline filter analysis. In contrast, IEPOX uptake by ABS particles coated with AP-derived SOA is lower compared to that of pure ABS particles, strongly dependent on particle composition, and therefore on particle size.


Assuntos
Atmosfera/química , Umidade , Ácidos/química , Aerossóis , Compostos de Epóxi/química
18.
Environ Sci Technol ; 50(18): 9872-80, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27548285

RESUMO

With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are subjects of intense research because particles affect Earth's climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2 or more higher than those typically used in coupled chemistry climate models. SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 50 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx-dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the preindustrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest that a more-complex representation of NOx-dependent SOA yields may be important in models.


Assuntos
Aerossóis , Atmosfera/química , Poluentes Atmosféricos , Óxido Nítrico/química , Óxidos de Nitrogênio , Oxirredução
19.
Environ Sci Technol ; 50(18): 9889-99, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27466979

RESUMO

Atmospheric oxidation of isoprene under low-NOx conditions leads to the formation of isoprene hydroxyhydroperoxides (ISOPOOH). Subsequent oxidation of ISOPOOH largely produces isoprene epoxydiols (IEPOX), which are known secondary organic aerosol (SOA) precursors. Although SOA from IEPOX has been previously examined, systematic studies of SOA characterization through a non-IEPOX route from 1,2-ISOPOOH oxidation are lacking. In the present work, SOA formation from the oxidation of authentic 1,2-ISOPOOH under low-NOx conditions was systematically examined with varying aerosol compositions and relative humidity. High yields of highly oxidized compounds, including multifunctional organosulfates (OSs) and hydroperoxides, were chemically characterized in both laboratory-generated SOA and fine aerosol samples collected from the southeastern U.S. IEPOX-derived SOA constituents were observed in all experiments, but their concentrations were only enhanced in the presence of acidified sulfate aerosol, consistent with prior work. High-resolution aerosol mass spectrometry (HR-AMS) reveals that 1,2-ISOPOOH-derived SOA formed through non-IEPOX routes exhibits a notable mass spectrum with a characteristic fragment ion at m/z 91. This laboratory-generated mass spectrum is strongly correlated with a factor recently resolved by positive matrix factorization (PMF) of aerosol mass spectrometer data collected in areas dominated by isoprene emissions, suggesting that the non-IEPOX pathway could contribute to ambient SOA measured in the Southeastern United States.


Assuntos
Aerossóis , Atmosfera/química , Espectrometria de Massas , Oxirredução , Sulfatos/química
20.
Sleep Breath ; 20(2): 759-68, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26797925

RESUMO

OBJECTIVES: We tested the hypothesis that the prevalence of somatic syndromes, anxiety, and insomnia among sleep disordered breathing (SDB) patients is correlated with their levels of somatic arousal, the symptoms of increased sympathetic nervous system tone under conditions of stress. METHODS: We administered the Body Sensation Questionnaire (BSQ; a 17-item questionnaire with increasing levels of somatic arousal scored 17-85) to 152 consecutive upper airway resistance syndrome (UARS) patients and 150 consecutive obstructive sleep apnea/hypopnea (OSA/H) patients. From medical records, we characterized each patient in terms of the presence of syndromes and symptoms into three categories: somatic syndromes (six syndromes), anxiety (anxiety disorders, nightmares, use of benzodiazepines), and insomnia (sleep onset, sleep maintenance, and use of hypnotics). For the pooled sample of SDB patients, we modeled the correlation of the BSQ score with the presence of each syndrome/symptom parameter within each of the three categories, with adjustment for male vs. female. RESULTS: Mean BSQ scores in females were significantly higher than those in males (32.5 ± 11.1 vs. 26.9 ± 8.2; mean ± SD). Increasing BSQ scores significantly correlated with increasing prevalence rates of somatic syndromes (p < 0.0001), of anxiety (p < 0.0001), and of insomnia (p ≤ 0.0001). In general, females had higher prevalence rates of somatic syndromes and symptoms of anxiety than males at any BSQ score while rates of insomnia were similar. CONCLUSIONS: In patients with SDB, there is a strong association between the level of somatic arousal and the presence of stress-related disorders like somatic syndromes, anxiety, and insomnia.


Assuntos
Transtornos de Ansiedade/diagnóstico , Transtornos de Ansiedade/epidemiologia , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/epidemiologia , Distúrbios do Início e da Manutenção do Sono/diagnóstico , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Transtornos Somatoformes/diagnóstico , Transtornos Somatoformes/epidemiologia , Estresse Psicológico/diagnóstico , Estresse Psicológico/epidemiologia , Adulto , Comorbidade , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA