Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 15(1): 43, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413212

RESUMO

BACKGROUND: The cardiovascular effects of pulmonary exposure to engineered nanomaterials (ENM) are poorly understood, and the reproductive consequences are even less understood. Inflammation remains the most frequently explored mechanism of ENM toxicity. However, the key mediators and steps between lung exposure and uterine health remain to be fully defined. The purpose of this study was to determine the uterine inflammatory and vascular effects of pulmonary exposure to titanium dioxide nanoparticles (nano-TiO2). We hypothesized that pulmonary nano-TiO2 exposure initiates a Th2 inflammatory response mediated by Group II innate lymphoid cells (ILC2), which may be associated with an impairment in uterine microvascular reactivity. METHODS: Female, virgin, Sprague-Dawley rats (8-12 weeks) were exposed to 100 µg of nano-TiO2 via intratracheal instillation 24 h prior to microvascular assessments. Serial blood samples were obtained at 0, 1, 2 and 4 h post-exposure for multiplex cytokine analysis. ILC2 numbers in the lungs were determined. ILC2s were isolated and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) levels were measured. Pressure myography was used to assess vascular reactivity of isolated radial arterioles. RESULTS: Pulmonary nano-TiO2 exposure was associated with an increase in IL-1ß, 4, 5 and 13 and TNF- α 4 h post-exposure, indicative of an innate Th2 inflammatory response. ILC2 numbers were significantly increased in lungs from exposed animals (1.66 ± 0.19%) compared to controls (0.19 ± 0.22%). Phosphorylation of the transactivation domain (Ser-468) of NF-κB in isolated ILC2 and IL-33 in lung epithelial cells were significantly increased (126.8 ± 4.3% and 137 ± 11% of controls respectively) by nano-TiO2 exposure. Lastly, radial endothelium-dependent arteriolar reactivity was significantly impaired (27 ± 12%), while endothelium-independent dilation (7 ± 14%) and α-adrenergic sensitivity (8 ± 2%) were not altered compared to control levels. Treatment with an anti- IL-33 antibody (1 mg/kg) 30 min prior to nano-TiO2 exposure resulted in a significant improvement in endothelium-dependent dilation and a decreased level of IL-33 in both plasma and bronchoalveolar lavage fluid. CONCLUSIONS: These results provide evidence that the uterine microvascular dysfunction that follows pulmonary ENM exposure may be initiated via activation of lung-resident ILC2 and subsequent systemic Th2-dependent inflammation.


Assuntos
Arteríolas/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Nanopartículas/toxicidade , Titânio/toxicidade , Útero/irrigação sanguínea , Animais , Arteríolas/imunologia , Arteríolas/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Feminino , Exposição por Inalação/efeitos adversos , Interleucina-33/sangue , Pulmão/irrigação sanguínea , Pulmão/imunologia , Contagem de Linfócitos , Linfócitos/imunologia , Microcirculação/efeitos dos fármacos , Microcirculação/imunologia , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos , Vasodilatação/imunologia
2.
J Toxicol Environ Health A ; 74(21): 1368-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21916743

RESUMO

An automated whole-body inhalation exposure system capable of exposing 12 individually housed rats was designed to examine the potential adverse health effects of the oil dispersant COREXIT EC9500A, used extensively during the Deepwater Horizon oil spill. A computer-controlled syringe pump injected the COREXIT EC9500A into an atomizer where droplets and vapor were formed and mixed with diluent air. The aerosolized COREXIT EC9500A was passed into a customized exposure chamber where a calibrated light-scattering instrument estimated the real-time particle mass concentration of the aerosol in the chamber. Software feedback loops controlled the chamber aerosol concentration and pressure throughout each exposure. The particle size distribution of the dispersant aerosol was measured and shown to have a count median aerodynamic diameter of 285 nm with a geometric standard deviation of 1.7. The total chamber concentration (particulate + vapor) was determined using a modification of the acidified methylene blue spectrophotometric assay for anionic surfactants. Tests were conducted to show the effectiveness of closed loop control of chamber concentration and to verify chamber concentration homogeneity. Five automated 5-h animal exposures were performed that produced controlled and consistent COREXIT EC9500A concentrations (27.1 ± 2.9 mg/m(3), mean ± SD).


Assuntos
Emulsificantes/toxicidade , Recuperação e Remediação Ambiental/efeitos adversos , Exposição por Inalação/efeitos adversos , Lipídeos/toxicidade , Modelos Animais , Poluição por Petróleo , Testes de Toxicidade/métodos , Aerossóis , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Software , Testes de Toxicidade/instrumentação
3.
J Toxicol Environ Health A ; 74(21): 1397-404, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21916745

RESUMO

These studies characterized cardiovascular responses after an acute inhalation exposure to COREXIT EC9500A, the oil dispersant used in the Deepwater Horizon oil spill. Male Sprague-Dawley rats underwent a single 5-h inhalation exposure to COREXIT EC9500A (average exposure level 27.12 mg/m(3)) or air. On d 1 and 7 following the exposure, rats were implanted with indwelling catheters and changes in heart rate and blood pressure were assessed in response to increasing levels of adrenoreceptor agonists. A separate group of rats was euthanized at the same time points, ventral tail arteries were dissected, and vascular tone along with dose-dependent responses to vasoconstricting and dilating factors were assessed in vitro. Agonist-induced dose-dependent increases in heart rate and blood pressure were greater in COREXIT EC9500A-exposed than in air-exposed rats at 1 d but not 7 d after the exposure. COREXIT EC9500A exposure also induced a rise in basal tone and reduced responsiveness of tail arteries to acetylcholine-induced vasodilation at 1 d but not 7 d following the exposure. These findings demonstrate that an acute exposure to COREXIT EC9500A exerts transient effects on cardiovascular and peripheral vascular functions.


Assuntos
Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Emulsificantes/toxicidade , Recuperação e Remediação Ambiental/efeitos adversos , Exposição por Inalação/efeitos adversos , Lipídeos/toxicidade , Animais , Artérias/química , Artérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Modelos Animais , Poluição por Petróleo , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Aguda , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA