Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 56(7): 1631-1648.e10, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392737

RESUMO

CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Diferenciação Celular , Proliferação de Células , Receptores de Antígenos de Linfócitos T
2.
Trends Immunol ; 44(11): 917-931, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858490

RESUMO

Following stimulation, the T cell receptor (TCR) and its coreceptors integrate multiple intracellular signals to initiate T cell proliferation, migration, gene expression, and metabolism. Among these signaling molecules are the small GTPases RAS and RAP1, which induce MAPK pathways and cellular adhesion to activate downstream effector functions. Although many studies have helped to elucidate the signaling intermediates that mediate T cell activation, the molecules and pathways that keep naive T cells in check are less understood. Several recent studies provide evidence that RASA2 and RASA3, which are GAP1-family GTPase-activating proteins (GAPs) that inactivate RAS and RAP1, respectively, are crucial molecules that limit T cell activation and adhesion. In this review we describe recent data on the roles of RASA2 and RASA3 as gatekeepers of T cell activation and migration.


Assuntos
Proteínas Ativadoras de GTPase , Transdução de Sinais , Humanos , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Transdução de Sinais/fisiologia , Adesão Celular/fisiologia , Linfócitos T/metabolismo , Proteínas Ativadoras de ras GTPase
3.
J Immunol ; 208(9): 2131-2140, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396221

RESUMO

Several unique waves of γδ T cells are generated solely in the fetal/neonatal thymus, whereas additional γδ T cell subsets are generated in adults. One intriguing feature of γδ T cell development is the coordination of differentiation and acquisition of effector function within the fetal thymus; however, it is less clear whether this paradigm holds true in adult animals. In this study, we investigated the relationship between maturation and thymic export of adult-derived γδ thymocytes in mice. In the Rag2pGFP model, immature (CD24+) γδ thymocytes expressed high levels of GFP whereas only a minority of mature (CD24-) γδ thymocytes were GFP+ Similarly, most peripheral GFP+ γδ T cells were immature. Analysis of γδ recent thymic emigrants (RTEs) indicated that most γδ T cell RTEs were CD24+ and GFP+, and adoptive transfer experiments demonstrated that immature γδ thymocytes can mature outside the thymus. Mature γδ T cells largely did not recirculate to the thymus from the periphery; rather, a population of mature γδ thymocytes that produced IFN-γ or IL-17 remained resident in the thymus for at least 60 d. These data support the existence of two populations of γδ T cell RTEs in adult mice: a majority subset that is immature and matures in the periphery after thymic emigration, and a minority subset that completes maturation within the thymus prior to emigration. Additionally, we identified a heterogeneous population of resident γδ thymocytes of unknown functional importance. Collectively, these data shed light on the generation of the γδ T cell compartment in adult mice.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Animais , Emigração e Imigração , Ativação Linfocitária , Camundongos , Timócitos
4.
PLoS Pathog ; 16(4): e1008515, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32353085

RESUMO

Type III interferons (IFN-lambdas(λ)) are important cytokines that inhibit viruses and modulate immune responses by acting through a unique IFN-λR1/IL-10RB heterodimeric receptor. Until now, the primary antiviral function of IFN-λs has been proposed to be at anatomical barrier sites. Here, we examine the regulation of IFN-λR1 expression and measure the downstream effects of IFN-λ3 stimulation in primary human blood immune cells, compared with lung or liver epithelial cells. IFN-λ3 directly bound and upregulated IFN-stimulated gene (ISG) expression in freshly purified human B cells and CD8+ T cells, but not monocytes, neutrophils, natural killer cells, and CD4+ T cells. Despite similar IFNLR1 transcript levels in B cells and lung epithelial cells, lung epithelial cells bound more IFN-λ3, which resulted in a 50-fold greater ISG induction when compared to B cells. The reduced response of B cells could be explained by higher expression of the soluble variant of IFN-λR1 (sIFN-λR1), which significantly reduced ISG induction when added with IFN-λ3 to peripheral blood mononuclear cells or liver epithelial cells. T-cell receptor stimulation potently, and specifically, upregulated membrane-bound IFNLR1 expression in CD4+ T cells, leading to greater antiviral gene induction, and inhibition of human immunodeficiency virus type 1 infection. Collectively, our data demonstrate IFN-λ3 directly interacts with the human adaptive immune system, unlike what has been previously shown in published mouse models, and that type III IFNs could be potentially utilized to suppress both mucosal and blood-borne viral infections.


Assuntos
Interferons/farmacologia , Receptores de Interferon/biossíntese , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Células Epiteliais/metabolismo , Expressão Gênica , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Interferon alfa-2/farmacologia , Interferons/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Splicing de RNA , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Interferon lambda
5.
J Immunol ; 197(5): 1743-53, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465532

RESUMO

T cell development is dependent on the migration of progenitor cells from the bone marrow to the thymus. Upon reaching the thymus, progenitors undergo a complex developmental program that requires inputs from various highly conserved signaling pathways including the Notch and Wnt pathways. To date, Ras signaling has not been implicated in the very earliest stages of T cell differentiation, but members of a family of Ras activators called RasGRPs have been shown to be involved at multiple stages of T cell development. We examined early T cell development in mice lacking RasGRP1, RasGRP3, and RasGRPs 1 and 3. We report that RasGRP1- and RasGRP3-deficient thymi show significantly reduced numbers of early thymic progenitors (ETPs) relative to wild type thymi. Furthermore, RasGRP1/3 double-deficient thymi show significant reductions in ETP numbers compared with either RasGRP1 or RasGRP3 single-deficient thymi, suggesting that both RasGRP1 and RasGRP3 regulate the generation of ETPs. In addition, competitive bone marrow chimera experiments reveal that RasGRP1/3 double-deficient progenitors intrinsically generate ETPs less efficiently than wild type progenitors. Finally, RasGRP1/3-deficient progenitors show impaired migration toward the CCR9 ligand, CCL25, suggesting that RasGRP1 and RasGRP3 may regulate progenitor entry into the thymus through a CCR9-dependent mechanism. These data demonstrate that, in addition to Notch and Wnt, the highly conserved Ras pathway is critical for the earliest stages of T cell development and further highlight the importance of Ras signaling during thymocyte maturation.


Assuntos
Linfócitos B/fisiologia , Diferenciação Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Linfócitos T/fisiologia , Timócitos/fisiologia , Timo/fisiologia , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Animais , Linfócitos B/imunologia , Proliferação de Células , Quimiocinas CC/imunologia , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Ativação Linfocitária , Células Progenitoras Linfoides/imunologia , Células Progenitoras Linfoides/fisiologia , Camundongos , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/fisiologia , Receptores CCR/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Timócitos/imunologia , Timo/citologia , Timo/imunologia , Fatores ras de Troca de Nucleotídeo Guanina/deficiência , Fatores ras de Troca de Nucleotídeo Guanina/genética
6.
J Allergy Clin Immunol Glob ; 2(4): 100131, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37781651

RESUMO

Background: The immunologic mechanisms underlying pulmonary type 2 inflammation, including the dynamics of eosinophil recruitment to the lungs, still need to be elucidated. Objective: We sought to investigate how IL-13-producing TH2 effector cells trigger eosinophil migration in house dust mite (HDM)-driven allergic pulmonary inflammation. Methods: Multiparameter and molecular profiling of murine lungs with HDM-induced allergy was investigated in the absence of IL-13 signaling by using IL-13Rα1-deficient mice and separately through adoptive transfer of CD4+ T cells from IL-5-deficient mice into TCRα-/- mice before allergic inflammation. Results: We demonstrated through single-cell techniques that HDM-driven pulmonary inflammation displays a profile characterized by TH2 effector cell-induced IL-13-dominated eosinophilic inflammation. Using HDM-sensitized IL-13Rα1-/- mice, we found a marked reduction in the influx of eosinophils into the lungs along with a significant downregulation of both CCL-11 and CCL-24. We further found that eosinophil trafficking to the lung relies on production of IL-13-driven CCL-11 and CCL-24 by fibroblasts and Ly6C+ (so-called classical) monocytes. Moreover, this IL-13-mediated eotaxin-dependent eosinophil influx to the lung tissue required IL-5-induced eosinophilia. Finally, we demonstrated that this IL-13-driven eosinophil-dominated pulmonary inflammation was critical for limiting bystander lung transiting Ascaris parasites in a model of allergy and helminth interaction. Conclusion: Our data suggest that IL-5-dependent allergen-specific TH2 effector cell response and subsequent signaling through the IL-13/IL-13Rα1 axis in fibroblasts and myeloid cells regulate the eotaxin-dependent recruitment of eosinophils to the lungs, with multiple downstream consequences, including bystander control of lung transiting parasitic helminths.

7.
J Exp Med ; 220(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36326697

RESUMO

Inborn errors of IFN-γ immunity can underlie tuberculosis (TB). We report three patients from two kindreds without EBV viremia or disease but with severe TB and inherited complete ITK deficiency, a condition associated with severe EBV disease that renders immunological studies challenging. They have CD4+ αß T lymphocytopenia with a concomitant expansion of CD4-CD8- double-negative (DN) αß and Vδ2- γδ T lymphocytes, both displaying a unique CD38+CD45RA+T-bet+EOMES- phenotype. Itk-deficient mice recapitulated an expansion of the γδ T and DN αß T lymphocyte populations in the thymus and spleen, respectively. Moreover, the patients' T lymphocytes secrete small amounts of IFN-γ in response to TCR crosslinking, mitogens, or forced synapse formation with autologous B lymphocytes. Finally, the patients' total lymphocytes secrete small amounts of IFN-γ, and CD4+, CD8+, DN αß T, Vδ2+ γδ T, and MAIT cells display impaired IFN-γ production in response to BCG. Inherited ITK deficiency undermines the development and function of various IFN-γ-producing T cell subsets, thereby underlying TB.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Tuberculose , Animais , Humanos , Camundongos , Interferon gama , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T , Timo
8.
Sci Signal ; 15(743): eabl9169, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35857633

RESUMO

The integrin lymphocyte function-associated antigen 1 (LFA-1) helps to coordinate the migration, adhesion, and activation of T cells through interactions with intercellular adhesion molecule 1 (ICAM-1) and ICAM-2. LFA-1 is activated during the engagement of chemokine receptors and the T cell receptor (TCR) through inside-out signaling, a process that is partially mediated by phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol 3,4,5-trisphosphate (PIP3). To evaluate potential roles of PI3K in LFA-1 activation, we designed a library of CRISPR/single guide RNAs targeting known and potential PIP3-binding proteins and screened for effects on the ability of primary mouse T cells to bind to ICAM-1. We identified multiple proteins that regulated the binding of LFA-1 to ICAM-1, including the Rap1 and Ras GTPase-activating protein RASA3. We found that RASA3 suppressed LFA-1 activation in T cells, that its expression was rapidly reduced upon T cell activation, and that its activity was inhibited by PI3K. Loss of RASA3 in T cells led to increased Rap1 activation, defective lymph node entry and egress, and impaired responses to T-dependent immunization in mice. Our results reveal a critical role for RASA3 in T cell migration, homeostasis, and function.


Assuntos
Antígeno-1 Associado à Função Linfocitária , Fosfatidilinositol 3-Quinases , Animais , Antígenos CD , Adesão Celular/genética , Moléculas de Adesão Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Ativadoras de GTPase , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T/metabolismo
9.
Front Immunol ; 12: 708908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421914

RESUMO

PI3K signalling is required for activation, differentiation, and trafficking of T cells. PI3Kδ, the dominant PI3K isoform in T cells, has been extensively characterised using PI3Kδ mutant mouse models and PI3K inhibitors. Furthermore, characterisation of patients with Activated PI3K Delta Syndrome (APDS) and mouse models with hyperactive PI3Kδ have shed light on how increased PI3Kδ activity affects T cell functions. An important function of PI3Kδ is that it acts downstream of TCR stimulation to activate the major T cell integrin, LFA-1, which controls transendothelial migration of T cells as well as their interaction with antigen-presenting cells. PI3Kδ also suppresses the cell surface expression of CD62L and CCR7 which controls the migration of T cells across high endothelial venules in the lymph nodes and S1PR1 which controls lymph node egress. Therefore, PI3Kδ can control both entry and exit of T cells from lymph nodes as well as the recruitment to and retention of T cells within inflamed tissues. This review will focus on the regulation of adhesion receptors by PI3Kδ and how this contributes to T cell trafficking and localisation. These findings are relevant for our understanding of how PI3Kδ inhibitors may affect T cell redistribution and function.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/fisiologia , Linfócitos T/fisiologia , Animais , Adesão Celular , Movimento Celular , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Sinapses Imunológicas/fisiologia , Integrinas/fisiologia , Antígeno-1 Associado à Função Linfocitária/fisiologia , Camundongos , Doenças da Imunodeficiência Primária/etiologia , Transdução de Sinais/fisiologia , Quinases Associadas a rho/fisiologia
10.
Mol Metab ; 39: 101014, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32413586

RESUMO

OBJECTIVES: Our study shows that glucagon-like peptide-1 (GLP-1) is secreted within human islets and may play an unexpectedly important paracrine role in islet physiology and pathophysiology. It is known that α cells within rodent and human pancreatic islets are capable of secreting GLP-1, but little is known about the functional role that islet-derived GLP-1 plays in human islets. METHODS: We used flow cytometry, immunohistochemistry, perifusions, and calcium imaging techniques to analyse GLP-1 expression and function in islets isolated from cadaveric human donors with or without type 2 diabetes. We also used immunohistochemistry to analyse GLP-1 expression within islets from pancreatic biopsies obtained from living donors. RESULTS: We have demonstrated that human islets secrete ∼50-fold more GLP-1 than murine islets and that ∼40% of the total human α cells contain GLP-1. Our results also confirm that dipeptidyl peptidase-4 (DPP4) is expressed in α cells. Sitagliptin increased GLP-1 secretion from cultured human islets but did not enhance glucose-stimulated insulin secretion (GSIS) in islets from non-diabetic (ND) or type 2 diabetic (T2D) donors, suggesting that ß cell GLP-1 receptors (GLP-1R) may already be maximally activated. Therefore, we tested the effects of exendin-9, a GLP-1R antagonist. Exendin-9 was shown to reduce GSIS by 39% and 61% in ND islets and T2D islets, respectively. We also observed significantly more GLP-1+ α cells in T2D islets compared with ND islets obtained from cadaveric donors. Furthermore, GLP-1+ α cells were also identified in pancreatic islet sections obtained from living donors undergoing surgery. CONCLUSIONS: In summary, we demonstrated that human islets secrete robust amounts of GLP-1 from an α cell subpopulation and that GLP-1R signalling may support GSIS to a greater extent in T2D islets.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/biossíntese , Células Secretoras de Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Biomarcadores , Diabetes Mellitus Tipo 2/etiologia , Expressão Gênica , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Glucose/metabolismo , Humanos , Imunofenotipagem , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Camundongos
11.
J Exp Med ; 214(8): 2421-2435, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28652304

RESUMO

Strong T cell receptor (TCR) signaling largely induces cell death during thymocyte development, whereas weak TCR signals induce positive selection. However, some T cell lineages require strong TCR signals for differentiation through a process termed agonist selection. The signaling relationships that underlie these three fates are unknown. RasGRP1 is a Ras activator required to transmit weak TCR signals leading to positive selection. Here, we report that, despite being dispensable for thymocyte clonal deletion, RasGRP1 is critical for agonist selection of TCRαß+CD8αα intraepithelial lymphocyte (IEL) progenitors (IELps), even though both outcomes require strong TCR signaling. Bim deficiency rescued IELp development in RasGRP1-/- mice, suggesting that RasGRP1 functions to promote survival during IELp generation. Additionally, expression of CD122 and the adhesion molecules α4ß7 and CD103 define distinct IELp subsets with differing abilities to generate TCRαß+CD8αα IEL in vivo. These findings demonstrate that RasGRP1-dependent signaling underpins thymic selection processes induced by both weak and strong TCR signals and is differentially required for fate decisions derived from a strong TCR stimulus.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Mucosa Intestinal/citologia , Receptores de Antígenos de Linfócitos T alfa-beta/fisiologia , Células-Tronco/fisiologia , Timo/citologia , Animais , Linhagem da Célula/fisiologia , Feminino , Humanos , Mucosa Intestinal/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
12.
PLoS One ; 8(1): e53300, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308188

RESUMO

T cell development is a highly dynamic process that is driven by interactions between developing thymocytes and the thymic microenvironment. Upon entering the thymus, the earliest thymic progenitors, called CD4(-)CD8(-) 'double negative' (DN) thymocytes, pass through a checkpoint termed "ß-selection" before maturing into CD4(+)CD8(+) 'double positive' (DP) thymocytes. ß-selection is an important developmental checkpoint during thymopoiesis where developing DN thymocytes that successfully express the pre-T cell receptor (TCR) undergo extensive proliferation and differentiation towards the DP stage. Signals transduced through the pre-TCR, chemokine receptor CXCR4 and Notch are thought to drive ß-selection. Additionally, it has long been known that ERK is activated during ß-selection; however the pathways regulating ERK activation remain unknown. Here, we performed a detailed analysis of the ß-selection events in mice lacking RasGRP1, RasGRP3 and RasGRP1 and 3. We report that RasGRP1 KO and RasGRP1/3 DKO deficient thymi show a partial developmental block at the early DN3 stage of development. Furthermore, DN3 thymocytes from RasGRP1 and RasGRP1/3 double knock-out thymi show significantly reduced proliferation, despite expression of the TCRß chain. As a result of impaired ß-selection, the pool of TCRß(+) DN4 is significantly diminished, resulting in inefficient DN to DP development. Also, we report that RasGRP1 is required for ERK activation downstream of CXCR4 signaling, which we hypothesize represents a potential mechanism of RasGRP1 regulation of ß-selection. Our results demonstrate that RasGRP1 is an important regulator of proliferation and differentiation at the ß-selection checkpoint and functions downstream of CXCR4 to activate the Ras/MAPK pathway.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/imunologia , Sistema de Sinalização das MAP Quinases , Receptores CXCR4/imunologia , Linfócitos T/citologia , Timo/citologia , Fatores ras de Troca de Nucleotídeo Guanina/imunologia , Animais , Linhagem Celular , Proliferação de Células , Feminino , Técnicas de Inativação de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA