RESUMO
Morphological modulation in covalent organic frameworks (COFs) with particular emphasis on the correlation between structure and target applications in biomedical fields, is currently in its early stage of evolution. Herein, a multifunctional rattle-architecture imine-based COF with a mobile core of gold nanoparticles (Au NPs) and an outer polydopamine (PDA) shell, tailored for cancer treatment, has been developed to effectively integrate dual responsive release capabilities with the potential for multiple therapeutic applications. The engineered COF displays outstanding crystallinity, a suitable size and precisely controlled morphological characteristics. By leveraging COF and PDA attributes, the successful co-delivery of hydrophilic doxorubicin (DOX) and hydrophobic docetaxel (DTX) within discrete compartments is achieved responsive to both pH and near-infrared triggers. Designed nanocarrier outperforms prior COFs with a superior 83.7% DOX loading capacity, thanks to its expansive internal space and porous shell. Taking advantage of the inclusion of Au core and the concurrent presence of COF and PDA outer shells, the nanocarrier exhibits a significant photothermal-conversion capability. The rattle-architecture double-shelled Au@RCOF@PDA were functionalized with poly(ethylene glycol)-folic acid (PEG-FA) to confer the system with active-targeting capability and enhanced biocompatibility. Through in vitro and in vivo evaluations, the designed system demonstrates an exceptional synergistic anti-tumor effect, along with favorable biosafety and histocompatibility. This study not only sheds light on the remarkable merits offered by regulating the morphology of COF-based systems in cancer therapy but also highlights the potential for synergistic therapeutic approaches in advancing cancer treatment strategies.
Assuntos
Antineoplásicos , Docetaxel , Doxorrubicina , Ouro , Indóis , Estruturas Metalorgânicas , Terapia Fototérmica , Doxorrubicina/química , Doxorrubicina/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/síntese química , Humanos , Docetaxel/química , Docetaxel/farmacologia , Ouro/química , Ouro/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Animais , Indóis/química , Indóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Camundongos , Ensaios de Seleção de Medicamentos Antitumorais , Tamanho da Partícula , Propriedades de Superfície , Nanopartículas Metálicas/química , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/químicaRESUMO
Heterojunction nanostructure construction and morphology engineering are considered to be effective approaches to improve photocatalytic performance. Herein, ternary hierarchical hollow structures consisting of cobalt-aluminum-layered double hydroxide (CoAl-LDH) nanoplates grown on hollow carbon nitride spheres (HCNS) and decorated with N-doped carbon quantum dots (NCQDs) were prepared using a templating method and a subsequent solvothermal process. The obtained HCNS@LDH/NCQD composites presented an improved performance in photocatalytic degradation of tetracycline and inactivation of E. coli compared with pure HCNS and LDH under visible light illumination. The enhanced photocatalytic activity of the designed photocatalyst could be attributed to the following reasons: (1) A special hollow structure provides more active sites and has multiple capabilities of light reflection by helping with a high specific surface area that improves the harvesting efficiency of solar light and (2) the strong synergistic effect among the constituents, which promotes separation and transfer of charge carriers and broadens the photo-response range.
RESUMO
Ultrasound in the 20-1000 kHz range show unique propagation characteristics in fluid media and possess energy that can break down fruit matrices to facilitate the extraction of valuable bioactive compounds. Red raspberries carry significant amounts of specific antioxidants, including ellagitannins and anthocyanins that are important for human health. The objective of this study was to investigate the effects of ultrasound frequencies associated with cavitation (20 kHz) and microstreaming (490 and 986 kHz) on total antioxidant activity (AOA), total phenolics content (TPC), and total monomeric anthocyanin content (ACY) of red raspberry puree prepared from crushed berries. The pureed fruit was subjected to high-intensity (20 kHz) and higher frequency-low intensity (490 and 986 kHz) ultrasound for 30 min. The temperature of treated purees increased to a maximum of 56 °C with 986 kHz. Sonication at 20 and 490 kHz significantly (p<0.05) affected the AOA, ACY, and TPC of red raspberry puree, while 986 kHz had no significant effect on ACY and AOA (p<0.05). In all cases, ultrasound treatment had significant and positive effect on at least one of the measured parameters up to 30 min. Sonication beyond 10 min (and up to 30 min) using 20 kHz either produced no change or caused a drop in AOA and ACY. However, for 986 and 20 kHz, TPC, increased by 10% and 9.5%, respectively after 30 min (p<0.05) compared to the control. At 20 kHz, AOA and ACY increased by 17.3% and 12.6% after 10 min. It was demonstrated that 20 kHz ultrasound treatment, when limited to 10 min, was the most effective for extraction of bioactive compounds in red raspberry compared to 490 and 986 kHz although the effect could be similar at the higher frequencies if different amplitudes are used.