Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842058

RESUMO

Four new copper(II) complexes were synthesized and characterized with the general formula [Cu(N-N)(Th)(NO3)], where N-N corresponds to the N-heterocyclic ligands 1,10-phenanthroline (phen), 2,2'-bipyridine (bipy), 4,7-diphenyl-1,10-phenanthroline (dpp), and 4,4-dimethyl-2,2'-bipyridine (dmbp) and Th represents the N,N-dibenzyl-N'-benzoylthiourea. Cytotoxic activities of the complexes against HCT116 (human colon carcinoma), HepG2 (human hepatocellular carcinoma), and non-tumor MRC-5 (human lung fibroblast) cells were investigated. The copper(II) complexes 1-4 were characterized by spectroscopic techniques while complexes 1 and 2 were studied using single-crystal X-ray diffraction as well. The complexes possessed a five-coordinated structure with one nitrate ligand as a monodentate at the axial position and two bidentate ligands N-heterocyclic and N,N-dibenzyl-N'-benzoylthiourea. The complexes showed promising IC50 values, ranging from 0.3 to 9.0 µM. Furthermore, interaction studies with biomolecules such as calf thymus DNA (ct-DNA) and Bovine Serum Albumin (BSA), which can act as possible biological targets of the complexes, were carried out. The studies suggested that the compounds interact moderately with ct-DNA and BSA. Complexes 1, 2, and 4 did not lead to cell accumulation at any stage of the cell cycle but caused a significant increase in internucleosomal DNA fragmentation. Whereas, compound 3 caused cell cycle arrest in the S phase while doxorubicin caused cell cycle arrest in the G2/M phase. The effect of structural modifications on the metal compounds was correlated with their biological properties and it was concluded that an increase in biological activity occurred with increasing the extension of the diimine ligands. Thus, complex 3 was the most promising one.

2.
Dalton Trans ; 49(36): 12643-12652, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32870224

RESUMO

Ruthenium(ii) diclofenac-based complexes of the general formula [Ru(dicl)(P-P)(bpy)]PF6 [dicl = diclofenac, bpy = 2,2'-bipyridine, and P-P = 1,4'-bis(diphenylphosphino)butane (dppb) (1), 1,2'-bis(diphenylphosphino)ethane (dppe) (2), 1,3'-bis(diphenylphosphino)propane (dppp) (3) and 1,1'-bis(diphenylphosphino)ferrocene (dppf) (4)] are synthesized. The complexes (1-4) are characterized by elemental analyses, infrared, NMR, and UV-vis spectroscopy and (3) and (4) are characterized by single crystal X-ray diffraction. The DNA binding of complexes (1-4), studied by circular dichroism (CD) and Hoechst 33 258 staining assay, indicates their binding with the minor grooves. The complexes interact with BSA with binding constants (Kb) in the range of 2.5 × 103-5.5 × 104 M-1. The complexes exhibit high cytotoxicity against the tumor cell lines A549, MDA-MB-231, and MCF-7 with IC50 values ranging from 0.56 to 15.28 µM. The complexes are more selective for the hormone-dependent MCF-7 breast tumor cell line and complex (1) is the most potent one. The study demonstrates the anticancer activity of ruthenium(ii)/diclofenac-based complexes.


Assuntos
Neoplasias da Mama/patologia , Complexos de Coordenação/farmacologia , DNA/metabolismo , Diclofenaco/química , Neoplasias Pulmonares/patologia , Rutênio/química , Soroalbumina Bovina/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA