Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Bioinformatics ; 35(1): 119-121, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931085

RESUMO

Summary: Standardized interfaces for efficiently accessing high-throughput sequencing data are a fundamental requirement for large-scale genomic data sharing. We have developed htsget, a protocol for secure, efficient and reliable access to sequencing read and variation data. We demonstrate four independent client and server implementations, and the results of a comprehensive interoperability demonstration. Availability and implementation: http://samtools.github.io/hts-specs/htsget.html. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Software , Genoma
2.
Nucleic Acids Res ; 40(Web Server issue): W54-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22693211

RESUMO

The massive use of Next-Generation Sequencing (NGS) technologies is uncovering an unexpected amount of variability. The functional characterization of such variability, particularly in the most common form of variation found, the Single Nucleotide Variants (SNVs), has become a priority that needs to be addressed in a systematic way. VARIANT (VARIant ANalyis Tool) reports information on the variants found that include consequence type and annotations taken from different databases and repositories (SNPs and variants from dbSNP and 1000 genomes, and disease-related variants from the Genome-Wide Association Study (GWAS) catalog, Online Mendelian Inheritance in Man (OMIM), Catalog of Somatic Mutations in Cancer (COSMIC) mutations, etc). VARIANT also produces a rich variety of annotations that include information on the regulatory (transcription factor or miRNA-binding sites, etc.) or structural roles, or on the selective pressures on the sites affected by the variation. This information allows extending the conventional reports beyond the coding regions and expands the knowledge on the contribution of non-coding or synonymous variants to the phenotype studied. Contrarily to other tools, VARIANT uses a remote database and operates through efficient RESTful Web Services that optimize search and transaction operations. In this way, local problems of installation, update or disk size limitations are overcome without the need of sacrifice speed (thousands of variants are processed per minute). VARIANT is available at: http://variant.bioinfo.cipf.es.


Assuntos
Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Software , Bases de Dados de Ácidos Nucleicos , Internet , Anotação de Sequência Molecular , Mutação , Polimorfismo de Nucleotídeo Único , Interface Usuário-Computador
3.
BMC Med Genomics ; 8: 83, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26690675

RESUMO

BACKGROUND: The molecular mechanisms leading to sporadic medullary thyroid carcinoma (sMTC) and juvenile papillary thyroid carcinoma (PTC), two rare tumours of the thyroid gland, remain poorly understood. Genetic studies on thyroid carcinomas have been conducted, although just a few loci have been systematically associated. Given the difficulties to obtain single-loci associations, this work expands its scope to the study of epistatic interactions that could help to understand the genetic architecture of complex diseases and explain new heritable components of genetic risk. METHODS: We carried out the first screening for epistasis by Multifactor-Dimensionality Reduction (MDR) in genome-wide association study (GWAS) on sMTC and juvenile PTC, to identify the potential simultaneous involvement of pairs of variants in the disease. RESULTS: We have identified two significant epistatic gene interactions in sMTC (CHFR-AC016582.2 and C8orf37-RNU1-55P) and three in juvenile PTC (RP11-648k4.2-DIO1, RP11-648k4.2-DMGDH and RP11-648k4.2-LOXL1). Interestingly, each interacting gene pair included a non-coding RNA, providing thus support to the relevance that these elements are increasingly gaining to explain carcinoma development and progression. CONCLUSIONS: Overall, this study contributes to the understanding of the genetic basis of thyroid carcinoma susceptibility in two different case scenarios such as sMTC and juvenile PTC.


Assuntos
Carcinoma Neuroendócrino/genética , Carcinoma/genética , Epistasia Genética , Estudo de Associação Genômica Ampla , Neoplasias da Glândula Tireoide/genética , Adolescente , Carcinoma Papilar , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Câncer Papilífero da Tireoide , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA