Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(2): 154-166, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36575984

RESUMO

BACKGROUND: Hydrogen sulfide is a critical endogenous signaling molecule that exerts protective effects in the setting of heart failure. Cystathionine γ-lyase (CSE), 1 of 3 hydrogen-sulfide-producing enzyme, is predominantly localized in the vascular endothelium. The interaction between the endothelial CSE-hydrogen sulfide axis and endothelial-mesenchymal transition, an important pathological process contributing to the formation of fibrosis, has yet to be investigated. METHODS: Endothelial-cell-specific CSE knockout and Endothelial cell-CSE overexpressing mice were subjected to transverse aortic constriction to induce heart failure with reduced ejection fraction. Cardiac function, vascular reactivity, and treadmill exercise capacity were measured to determine the severity of heart failure. Histological and gene expression analyses were performed to investigate changes in cardiac fibrosis and the activation of endothelial-mesenchymal transition. RESULTS: Endothelial-cell-specific CSE knockout mice exhibited increased endothelial-mesenchymal transition and reduced nitric oxide bioavailability in the myocardium, which was associated with increased cardiac fibrosis, impaired cardiac and vascular function, and worsened exercise performance. In contrast, genetic overexpression of CSE in endothelial cells led to increased myocardial nitric oxide, decreased endothelial-mesenchymal transition and cardiac fibrosis, preserved cardiac and endothelial function, and improved exercise capacity. CONCLUSIONS: Our data demonstrate that endothelial CSE modulates endothelial-mesenchymal transition and ameliorate the severity of pressure-overload-induced heart failure, in part, through nitric oxide-related mechanisms. These data further suggest that endothelium-derived hydrogen sulfide is a potential therapeutic for the treatment of heart failure with reduced ejection fraction.


Assuntos
Insuficiência Cardíaca , Sulfeto de Hidrogênio , Disfunção Ventricular Esquerda , Camundongos , Animais , Sulfeto de Hidrogênio/metabolismo , Células Endoteliais/metabolismo , Óxido Nítrico/metabolismo , Camundongos Knockout , Endotélio Vascular/metabolismo , Fibrose
2.
Circ Res ; 131(3): 222-235, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35701874

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) exerts mitochondria-specific actions that include the preservation of oxidative phosphorylation, biogenesis, and ATP synthesis, while inhibiting cell death. 3-MST (3-mercaptopyruvate sulfurtransferase) is a mitochondrial H2S-producing enzyme whose functions in the cardiovascular disease are not fully understood. In the current study, we investigated the effects of global 3-MST deficiency in the setting of pressure overload-induced heart failure. METHODS: Human myocardial samples obtained from patients with heart failure undergoing cardiac surgeries were probed for 3-MST protein expression. 3-MST knockout mice and C57BL/6J wild-type mice were subjected to transverse aortic constriction to induce pressure overload heart failure with reduced ejection fraction. Cardiac structure and function, vascular reactivity, exercise performance, mitochondrial respiration, and ATP synthesis efficiency were assessed. In addition, untargeted metabolomics were utilized to identify key pathways altered by 3-MST deficiency. RESULTS: Myocardial 3-MST was significantly reduced in patients with heart failure compared with nonfailing controls. 3-MST KO mice exhibited increased accumulation of branched-chain amino acids in the myocardium, which was associated with reduced mitochondrial respiration and ATP synthesis, exacerbated cardiac and vascular dysfunction, and worsened exercise performance following transverse aortic constriction. Restoring myocardial branched-chain amino acid catabolism with 3,6-dichlorobenzo1[b]thiophene-2-carboxylic acid (BT2) and administration of a potent H2S donor JK-1 ameliorates the detrimental effects of 3-MST deficiency in heart failure with reduced ejection fraction. CONCLUSIONS: Our data suggest that 3-MST derived mitochondrial H2S may play a regulatory role in branched-chain amino acid catabolism and mediate critical cardiovascular protection in heart failure.


Assuntos
Insuficiência Cardíaca , Sulfeto de Hidrogênio , Disfunção Ventricular Esquerda , Trifosfato de Adenosina/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/metabolismo
3.
J Surg Res ; 276: 354-361, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35429684

RESUMO

INTRODUCTION: Gastrointestinal anastomoses are performed millions of times per year worldwide. The major complication they share is anastomotic leak. We describe the development and initial safety/efficacy of a novel luminal stent which aims to address this clinical issue. MATERIALS AND METHODS: The stent was created out of two materials, a polyvinyl alcohol core and outer layer of acellular porcine small intestine submucosa. Ten healthy pigs underwent laparotomy, a portion of the colon was transected, and the stent was placed within the colonic lumen at the site of resection. Pigs were sacrificed at the end of postoperative week 2, and postoperative week 4. A portion of the descending colon was resected, and tissue samples from the anastomosis, intentional defect scar, and normal bowel overlying the stent were sent for histopathologic examination. RESULTS: All ten animals survived the study. None developed any clinical signs of obstruction, infection, leakage, fistula, wound complications, or bleeding. No evidence of colonic leak or luminal stenosis/stricture was noted. CONCLUSIONS: The results of this study show that a polyvinyl alcohol/acellular porcine small intestine submucosa stent sewn underneath a colonic anastomosis with a 2 cm intentional defect will result in no anastomotic complications. There were also no complications from placing this stent in any pigs. Additional studies with a control group should be conducted to see if this same stent can be built in different diameters, lengths, and configurations to prevent leaks in other organs. These encouraging results will hopefully lead to decreased leaks and the need for temporary ostomies in humans.


Assuntos
Fístula Anastomótica , Álcool de Polivinil , Anastomose Cirúrgica/efeitos adversos , Anastomose Cirúrgica/métodos , Fístula Anastomótica/etiologia , Fístula Anastomótica/patologia , Fístula Anastomótica/prevenção & controle , Animais , Colo/patologia , Colo/cirurgia , Intestino Delgado/cirurgia , Stents/efeitos adversos , Suínos
4.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743153

RESUMO

Acute myocardial infarction (MI) is one of the leading causes of death worldwide. Early identification of ischemia and establishing reperfusion remain cornerstones in the treatment of MI, as mortality and morbidity can be significantly reduced by establishing reperfusion to the affected areas. The aim of the current study was to investigate the metabolomic changes in the serum in a swine model of MI induced by ischemia and reperfusion (I/R) injury, and to identify circulating metabolomic biomarkers for myocardial injury at different phases. Female Yucatan minipigs were subjected to 60 min of ischemia followed by reperfusion, and serum samples were collected at baseline, 60 min of ischemia, 4 h of reperfusion, and 24 h of reperfusion. Circulating metabolites were analyzed using an untargeted metabolomic approach. A bioinformatic approach revealed that serum metabolites show distinct profiles during ischemia and during early and late reperfusion. Some notable changes during ischemia include accumulation of metabolites that indicate impaired mitochondrial function and N-terminally modified amino acids. Changes in branched-chain amino-acid metabolites were noted during early reperfusion, while bile acid pathway derivatives and intermediates predominated in the late reperfusion phases. This indicates a potential for such an approach toward identification of the distinct phases of ischemia and reperfusion in clinical situations.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Animais , Doença da Artéria Coronariana/complicações , Feminino , Isquemia/complicações , Metabolômica , Isquemia Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/metabolismo , Reperfusão/efeitos adversos , Suínos , Porco Miniatura
5.
Basic Res Cardiol ; 114(2): 9, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30656501

RESUMO

Enthusiasm for cell therapy for myocardial injury has waned due to equivocal benefits in clinical trials. In an attempt to improve efficacy, we investigated repeated cell therapy and adjunct renal denervation (RDN) as strategies for augmenting cardioprotection with cardiosphere-derived cells (CDCs). We hypothesized that combining CDC post-conditioning with repeated CDC doses or delayed RDN therapy would result in superior function and remodeling. Wistar-Kyoto (WKY) rats or spontaneously hypertensive rats (SHR) were subjected to 45 min of coronary artery ligation followed by reperfusion for 12-14 weeks. In the first study arm, SHR were treated with CDCs (0.5 × 106 i.c.) or PBS 20 min following reperfusion, or additionally treated with CDCs (1.0 × 106 i.v.) at 2, 4, and 8 weeks. In the second arm, at 4 weeks following myocardial infarction (MI), SHR received CDCs (0.5 × 106 i.c.) or CDCs + RDN. In the third arm, WKY rats were treated with i.c. CDCs administered 20 min following reperfusion and RDN or a sham at 4 weeks. Early i.c. + multiple i.v. dosing, but not single i.c. dosing, of CDCs improved long-term left ventricular (LV) function, but not remodeling. Delayed CDC + RDN therapy was not superior to single-dose delayed CDC therapy. Early CDC + delayed RDN therapy improved LV ejection fraction and remodeling compared to both CDCs alone and RDN alone. Given that both RDN and CDCs are currently in the clinic, our findings motivate further translation targeting a heart failure indication with combined approaches.


Assuntos
Denervação Autônoma/métodos , Traumatismo por Reperfusão Miocárdica , Transplante de Células-Tronco/métodos , Animais , Insuficiência Cardíaca , Rim/inervação , Rim/cirurgia , Masculino , Infarto do Miocárdio , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Remodelação Ventricular/fisiologia
6.
J Vasc Surg ; 69(6): 1924-1935, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30777693

RESUMO

OBJECTIVE: Previous studies have shown that hydrogen sulfide (H2S) exerts potent proangiogenic properties under in vitro conditions and in rodent models. We sought to determine whether a novel H2S prodrug promotes peripheral revascularization in a swine model of acute limb ischemia (ALI). METHODS: ALI was induced in 17 female miniswine via intravascular occlusion of the external iliac. At day 7 after ALI induction, miniswine (n = 17) were randomized to received placebo or the H2S prodrug, SG-1002 (800 mg per os twice a day), for 35 days. At day 35 SG-1002 increased circulating levels of H2S (5.0 ± 1.2 µmol/L vs 1.8 ± 0.50 µmol/L; P < .05), sulfane sulfur (10.6 ± 2.3 µmol/L vs 2.6 ± 0.8 µmol/L; P < .05), and nitrite (0.5 ± 0.05 µmol/L vs 0.3 ± 0.03 µmol/L; P < .005) compared with placebo. SG-1002 therapy increased angiographic scoring in ischemic limb vessel number (27.6 ± 1.6 vs 22.2 ± 1.8; P < .05) compared with placebo. Treatment with SG-1002 preserved existing capillaries in ischemic limbs (128.3 ± 18.7 capillaries/mm2 vs 79.0 ± 9.8 capillaries/mm2; P < .05) compared with placebo. Interestingly, treatment with SG-1002 also improved coronary vasorelaxation responses to bradykinin and substance P in miniswine with ALI. CONCLUSIONS: Our results suggest that daily administration of the H2S prodrug, SG-1002, leads to an increase in circulating H2S and nitric oxide signaling and preserves vessel number and density in ischemic limbs. Furthermore, SG-1002 therapy improved endothelial-dependent coronary artery vasorelaxation in the setting of ALI. Our data demonstrate that SG-1002 preserves the vascular architecture in ischemic limbs and exerts vascular protective effects in the coronary vasculature in a model of peripheral vascular disease.


Assuntos
Indutores da Angiogênese/farmacologia , Extremidades/irrigação sanguínea , Sulfeto de Hidrogênio/farmacologia , Isquemia/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Doença Arterial Periférica/tratamento farmacológico , Pró-Fármacos/farmacologia , Doença Aguda , Indutores da Angiogênese/sangue , Indutores da Angiogênese/farmacocinética , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Feminino , Sulfeto de Hidrogênio/sangue , Sulfeto de Hidrogênio/farmacocinética , Isquemia/sangue , Isquemia/fisiopatologia , Óxido Nítrico/sangue , Nitritos/sangue , Estresse Oxidativo/efeitos dos fármacos , Doença Arterial Periférica/sangue , Doença Arterial Periférica/fisiopatologia , Pró-Fármacos/farmacocinética , Fluxo Sanguíneo Regional , Transdução de Sinais , Suínos , Porco Miniatura , Vasodilatação/efeitos dos fármacos
7.
Am J Physiol Heart Circ Physiol ; 315(3): H563-H570, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949382

RESUMO

Cardiac fibroblasts are critical mediators of fibrotic remodeling in the failing heart and transform into myofibroblasts in the presence of profibrotic factors such as transforming growth factor-ß. Myocardial fibrosis worsens cardiac function, accelerating the progression to decompensated heart failure (HF). We investigated the effects of a novel inhibitor (NM922; NovoMedix, San Diego, CA) of the conversion of normal fibroblasts to the myofibroblast phenotype in the setting of pressure overload-induced HF. NM922 inhibited fibroblast-to-myofibroblast transformation in vitro via a reduction of activation of the focal adhesion kinase-Akt-p70S6 kinase and STAT3/4E-binding protein 1 pathways as well as via induction of cyclooxygenase-2. NM922 preserved left ventricular ejection fraction ( P < 0.05 vs. vehicle) and significantly attenuated transverse aortic constriction-induced LV dilation and hypertrophy ( P < 0.05 compared with vehicle). NM922 significantly ( P < 0.05) inhibited fibroblast activation, as evidenced by reduced myofibroblast counts per square millimeter of tissue area. Picrosirius red staining demonstrated that NM922 reduced ( P < 0.05) interstitial fibrosis compared with mice that received vehicle. Similarly, NM922 hearts had lower mRNA levels ( P < 0.05) of collagen types I and III, lysyl oxidase, and TNF-α at 16 wk after transverse aortic constriction. Treatment with NM922 after the onset of cardiac hypertrophy and HF resulted in attenuated myocardial collagen formation and adverse remodeling with preservation of left ventricular ejection fraction. Future studies are aimed at further elucidation of the molecular and cellular mechanisms by which this novel antifibrotic agent protects the failing heart. NEW & NOTEWORTHY Our data demonstrated that a novel antifibrotic agent, NM922, blocks the activation of fibroblasts, reduces the formation of cardiac fibrosis, and preserves cardiac function in a murine model of heart failure with reduced ejection fraction.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Sulfonamidas/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiotônicos/uso terapêutico , Células Cultivadas , Colágeno/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/química , Sulfonamidas/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo
8.
Circ Res ; 119(3): 470-80, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27296507

RESUMO

RATIONALE: Catheter-based renal denervation (RDN) is currently under development for the treatment of resistant hypertension and is thought to reduce blood pressure via interruption of sympathetic pathways that modulate cardiovascular function. The sympathetic nervous system also plays a critical role in the pathogenesis of acute myocardial infarction and heart failure. OBJECTIVE: We examined whether treatment with radiofrequency (RF)-RDN would protect the heart against subsequent myocardial ischemia/reperfusion injury via direct effects on the myocardium. METHODS AND RESULTS: Spontaneously hypertensive rats received either bilateral RF-RDN or sham-RDN. At 4 weeks after RF-RDN (n=14) or sham-RDN (n=14) treatment, spontaneously hypertensive rats were subjected to 30 minutes of transient coronary artery occlusion and 24 hours -7 days reperfusion. Four weeks after RF-RDN, myocardial oxidative stress was markedly attenuated, and transcription and translation of antioxidants, superoxide dismutase 1 and glutathione peroxidase-1, were significantly upregulated compared with sham-RDN spontaneously hypertensive rats. RF-RDN also inhibited myocardial G protein-coupled receptor kinase 2 pathological signaling and enhanced myocardial endothelial nitric oxide synthase function and nitric oxide signaling. RF-RDN therapy resulted in a significant reduction in myocardial infarct size per area at risk compared with sham-RDN (26.8 versus 43.9%; P<0.01) at 24 hours postreperfusion and significantly improved left ventricular function at 7 days after myocardial ischemia/reperfusion. CONCLUSIONS: RF-RDN reduced oxidative stress, inhibited G protein-coupled receptor kinase 2 signaling, increased nitric oxide bioavailability, and ameliorated myocardial reperfusion injury in the setting of severe hypertension. These findings provide new insights into the remote cardioprotective effects of RF-RDN acting directly on cardiac myocytes to attenuate cell death and protect against ischemic injury.


Assuntos
Ablação por Cateter/métodos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Rim/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevenção & controle , Óxido Nítrico/biossíntese , Animais , Denervação/métodos , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Rim/inervação , Rim/cirurgia , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/fisiologia
9.
J Vasc Surg ; 66(3): 891-901, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27693032

RESUMO

OBJECTIVE: Peripheral arterial disease (PAD) is a significant age-related medical condition with limited pharmacologic options. Severe PAD, termed critical limb ischemia, can lead to amputation. Skeletal muscle is the end organ most affected by PAD, leading to ischemic myopathy and debility of the patient. Currently, there are not any therapeutics to treat ischemic myopathy, and proposed biologic agents have not been optimized owing to a lack of preclinical models of PAD. Because a large animal model of ischemic myopathy may be useful in defining the optimal dosing and delivery regimens, the objective was to create and to characterize a swine model of ischemic myopathy that mimics patients with severe PAD. METHODS: Yorkshire swine (N = 8) underwent acute right hindlimb ischemia by endovascular occlusion of the external iliac artery. The effect of ischemia on limb function, perfusion, and degree of ischemic myopathy was quantified by weekly gait analysis, arteriography, hindlimb blood pressures, femoral artery duplex ultrasound scans, and histologic examination. Animals were terminated at 5 (n = 5) and 6 (n = 3) weeks postoperatively. Ossabaw swine (N = 8) fed a high-fat diet were used as a model of metabolic syndrome for comparison of arteriogenic recovery and validation of ischemic myopathy. RESULTS: There was persistent ischemia in the right hindlimb, and occlusion pressures were significantly depressed compared with the untreated left hindlimb out to 6 weeks (systolic blood pressure, 31 ± 21 vs 83 ± 15 mm Hg, respectively; P = .0007). The blood pressure reduction resulted in a significant increase of ischemic myopathy in the gastrocnemius muscle in the treated limb. Gait analysis revealed a functional deficit of the right hindlimb immediately after occlusion that improved rapidly during the first 2 weeks. Peak systolic velocity values in the right common femoral artery were severely diminished throughout the entire study (P < .001), and the hemodynamic environment after occlusion was characterized by low and oscillatory wall shear stress. Finally, the internal iliac artery on the side of the ischemic limb underwent significant arteriogenic remodeling (1.8× baseline) in the Yorkshire but not in the Ossabaw swine model. CONCLUSIONS: This model uses endovascular technology to produce the first durable large animal model of ischemic myopathy. Acutely (first 2 weeks), this model is associated with impaired gait but no tissue loss. Chronically (2-6 weeks), this model delivers persistent ischemia, resulting in ischemic myopathy similar to that seen in PAD patients. This model may be of use for testing novel therapeutics including biologic therapies for promoting neovascularization and arteriogenesis.


Assuntos
Procedimentos Endovasculares , Artéria Femoral/fisiopatologia , Hemodinâmica , Artéria Ilíaca/fisiopatologia , Isquemia/etiologia , Músculo Esquelético/irrigação sanguínea , Doença Arterial Periférica/etiologia , Angiografia , Animais , Velocidade do Fluxo Sanguíneo , Constrição Patológica , Modelos Animais de Doenças , Procedimentos Endovasculares/instrumentação , Feminino , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/patologia , Marcha , Membro Posterior , Humanos , Artéria Ilíaca/diagnóstico por imagem , Artéria Ilíaca/patologia , Isquemia/diagnóstico por imagem , Isquemia/patologia , Isquemia/fisiopatologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/patologia , Doença Arterial Periférica/fisiopatologia , Fluxo Sanguíneo Regional , Índice de Gravidade de Doença , Stents , Sus scrofa , Fatores de Tempo , Ultrassonografia Doppler Dupla , Remodelação Vascular
10.
11.
Circ Res ; 116(4): 572-86, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25499773

RESUMO

RATIONALE: Despite 4 decades of intense effort and substantial financial investment, the cardioprotection field has failed to deliver a single drug that effectively reduces myocardial infarct size in patients. A major reason is insufficient rigor and reproducibility in preclinical studies. OBJECTIVE: To develop a multicenter, randomized, controlled, clinical trial-like infrastructure to conduct rigorous and reproducible preclinical evaluation of cardioprotective therapies. METHODS AND RESULTS: With support from the National Heart, Lung, and Blood Institute, we established the Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR), based on the principles of randomization, investigator blinding, a priori sample size determination and exclusion criteria, appropriate statistical analyses, and assessment of reproducibility. To validate CAESAR, we tested the ability of ischemic preconditioning to reduce infarct size in 3 species (at 2 sites/species): mice (n=22-25 per group), rabbits (n=11-12 per group), and pigs (n=13 per group). During this validation phase, (1) we established protocols that gave similar results between centers and confirmed that ischemic preconditioning significantly reduced infarct size in all species and (2) we successfully established a multicenter structure to support CAESAR's operations, including 2 surgical centers for each species, a Pathology Core (to assess infarct size), a Biomarker Core (to measure plasma cardiac troponin levels), and a Data Coordinating Center-all with the oversight of an external Protocol Review and Monitoring Committee. CONCLUSIONS: CAESAR is operational, generates reproducible results, can detect cardioprotection, and provides a mechanism for assessing potential infarct-sparing therapies with a level of rigor analogous to multicenter, randomized, controlled clinical trials. This is a revolutionary new approach to cardioprotection. Importantly, we provide state-of-the-art, detailed protocols ("CAESAR protocols") for measuring infarct size in mice, rabbits, and pigs in a manner that is rigorous, accurate, and reproducible.


Assuntos
Fármacos Cardiovasculares/farmacologia , Avaliação Pré-Clínica de Medicamentos , Precondicionamento Isquêmico Miocárdico/métodos , Infarto do Miocárdio/prevenção & controle , National Heart, Lung, and Blood Institute (U.S.) , Projetos de Pesquisa , Animais , Biomarcadores/sangue , Comportamento Cooperativo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/normas , Feminino , Guias como Assunto , Humanos , Precondicionamento Isquêmico Miocárdico/normas , Masculino , Camundongos , Infarto do Miocárdio/sangue , Infarto do Miocárdio/patologia , Miocárdio/patologia , Valor Preditivo dos Testes , Coelhos , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Especificidade da Espécie , Suínos , Fatores de Tempo , Troponina I/sangue , Estados Unidos
12.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R263-71, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27280426

RESUMO

The collecting duct endothelin-1 (ET-1), endothelin B (ETB) receptor, and nitric oxide synthase-1 (NOS1) pathways are critical for regulation of fluid-electrolyte balance and blood pressure control during high-salt feeding. ET-1, ETB receptor, and NOS1 are highly expressed in the inner medullary collecting duct (IMCD) and vasa recta, suggesting that there may be cross talk or paracrine signaling between the vasa recta and IMCD. The purpose of this study was to test the hypothesis that endothelial cell-derived ET-1 (paracrine) and collecting duct-derived ET-1 (autocrine) promote IMCD nitric oxide (NO) production through activation of the ETB receptor during high-salt feeding. We determined that after 7 days of a high-salt diet (HS7), there was a shift to 100% ETB expression in IMCDs, as well as a twofold increase in nitrite production (a metabolite of NO), and this increase could be prevented by acute inhibition of the ETB receptor. ETB receptor blockade or NOS1 inhibition also prevented the ET-1-dependent decrease in ion transport from primary IMCDs, as determined by transepithelial resistance. IMCD were also isolated from vascular endothelial ET-1 knockout mice (VEETKO), collecting duct ET-1 KO (CDET-1KO), and flox controls. Nitrite production by IMCD from VEETKO and flox mice was similarly increased twofold with HS7. However, IMCD NO production from CDET-1KO mice was significantly blunted with HS7 compared with flox control. Taken together, these data indicate that during high-salt feeding, the autocrine actions of ET-1 via upregulation of the ETB receptor are critical for IMCD NO production, facilitating inhibition of ion reabsorption.


Assuntos
Comunicação Autócrina/fisiologia , Endotelina-1/metabolismo , Túbulos Renais Coletores/metabolismo , Óxido Nítrico/biossíntese , Receptor de Endotelina B/metabolismo , Cloreto de Sódio na Dieta/farmacocinética , Animais , Endotelina-1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/fisiologia
13.
Am J Physiol Heart Circ Physiol ; 309(2): H305-17, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25957218

RESUMO

Metabolic syndrome (MetS) reduces endothelial nitric oxide (NO) bioavailability and exacerbates vascular dysfunction in patients with preexisting vascular diseases. Nitrite, a storage form of NO, can mediate vascular function during pathological conditions when endogenous NO is reduced. The aims of the present study were to characterize the effects of severe MetS and obesity on dyslipidemia, myocardial oxidative stress, and endothelial NO synthase (eNOS) regulation in the obese Ossabaw swine (OS) model and to examine the effects of a novel, sustained-release formulation of sodium nitrite (SR-nitrite) on coronary vascular reactivity and myocardial redox status in obese OS subjected to critical limb ischemia (CLI). After 6 mo of an atherogenic diet, obese OS displayed a MetS phenotype. Obese OS had decreased eNOS functionality and NO bioavailability. In addition, obese OS exhibited increased oxidative stress and a significant reduction in antioxidant enzymes. The efficacy of SR-nitrite therapy was examined in obese OS subjected to CLI. After 3 wk of treatment, SR-nitrite (80 mg · kg(-1) · day(-1) bid po) increased myocardial nitrite levels and eNOS function. Treatment with SR-nitrite reduced myocardial oxidative stress while increasing myocardial antioxidant capacity. Ex vivo assessment of vascular reactivity of left anterior descending coronary artery segments demonstrated marked improvement in vasoreactivity to sodium nitroprusside but not to substance P and bradykinin in SR-nitrite-treated animals compared with placebo-treated animals. In conclusion, in a clinically relevant, large-animal model of MetS and CLI, treatment with SR-nitrite enhanced myocardial NO bioavailability, attenuated oxidative stress, and improved ex vivo coronary artery vasorelaxation.


Assuntos
Vasos Coronários/efeitos dos fármacos , Cardiopatias/prevenção & controle , Síndrome Metabólica/tratamento farmacológico , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doenças Vasculares Periféricas/tratamento farmacológico , Nitrito de Sódio/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Preparações de Ação Retardada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Feminino , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/fisiopatologia , Oxirredução , Doenças Vasculares Periféricas/metabolismo , Doenças Vasculares Periféricas/fisiopatologia , Índice de Gravidade de Doença , Suínos
14.
Am J Physiol Heart Circ Physiol ; 309(1): H82-92, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25910804

RESUMO

Nitrite is a storage reservoir of nitric oxide that is readily reduced to nitric oxide under pathological conditions. Previous studies have demonstrated that nitrite levels are significantly reduced in cardiovascular disease states, including peripheral vascular disease. We investigated the cytoprotective and proangiogenic actions of a novel, sustained-release formulation of nitrite (SR-nitrite) in a clinically relevant in vivo swine model of critical limb ischemia (CLI) involving central obesity and metabolic syndrome. CLI was induced in obese Ossabaw swine (n = 18) by unilateral external iliac artery deployment of a full cross-sectional vessel occlusion device positioned within an endovascular expanded polytetrafluoroethylene-lined nitinol stent-graft. At post-CLI day 14, pigs were randomized to placebo (n = 9) or SR-nitrite (80 mg, n = 9) twice daily by mouth for 21 days. SR-nitrite therapy increased nitrite, nitrate, and S-nitrosothiol in plasma and ischemic skeletal muscle. Oxidative stress was reduced in ischemic limb tissue of SR-nitrite- compared with placebo-treated pigs. Ischemic limb tissue levels of proangiogenic growth factors were increased following SR-nitrite therapy compared with placebo. Despite the increases in cytoprotective and angiogenic signals with SR-nitrite therapy, new arterial vessel formation and enhancement of blood flow to the ischemic limb were not different from placebo. Our data clearly demonstrate cytoprotective and proangiogenic signaling in ischemic tissues following SR-nitrite therapy in a very severe model of CLI. Further studies evaluating longer-duration nitrite therapy and/or additional nitrite dosing strategies are warranted to more fully evaluate the therapeutic potential of nitrite therapy in peripheral vascular disease.


Assuntos
Indutores da Angiogênese/farmacologia , Artéria Ilíaca/cirurgia , Isquemia , Síndrome Metabólica , Músculo Esquelético/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Doença Arterial Periférica , Nitrito de Sódio/farmacologia , Animais , Preparações de Ação Retardada , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea , Membro Posterior/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , S-Nitrosotióis/metabolismo , Suínos
15.
J Am Heart Assoc ; 13(4): e032646, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38353216

RESUMO

BACKGROUND: The renal sympathetic nervous system modulates systemic blood pressure, cardiac performance, and renal function. Pathological increases in renal sympathetic nerve activity contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). We investigated the effects of renal sympathetic denervation performed at early or late stages of HFpEF progression. METHODS AND RESULTS: Male ZSF1 obese rats were subjected to radiofrequency renal denervation (RF-RDN) or sham procedure at either 8 weeks or 20 weeks of age and assessed for cardiovascular function, exercise capacity, and cardiorenal fibrosis. Renal norepinephrine and renal nerve tyrosine hydroxylase staining were performed to quantify denervation following RF-RDN. In addition, renal injury, oxidative stress, inflammation, and profibrotic biomarkers were evaluated to determine pathways associated with RDN. RF-RDN significantly reduced renal norepinephrine and tyrosine hydroxylase content in both study cohorts. RF-RDN therapy performed at 8 weeks of age attenuated cardiac dysfunction, reduced cardiorenal fibrosis, and improved endothelial-dependent vascular reactivity. These improvements were associated with reductions in renal injury markers, expression of renal NLR family pyrin domain containing 3/interleukin 1ß, and expression of profibrotic mediators. RF-RDN failed to exert beneficial effects when administered in the 20-week-old HFpEF cohort. CONCLUSIONS: Our data demonstrate that early RF-RDN therapy protects against HFpEF disease progression in part due to the attenuation of renal fibrosis and inflammation. In contrast, the renoprotective and left ventricular functional improvements were lost when RF-RDN was performed in later HFpEF progression. These results suggest that RDN may be a viable treatment option for HFpEF during the early stages of this systemic inflammatory disease.


Assuntos
Insuficiência Cardíaca , Humanos , Masculino , Ratos , Animais , Insuficiência Cardíaca/metabolismo , Volume Sistólico , Tirosina 3-Mono-Oxigenase/metabolismo , Rim/metabolismo , Simpatectomia/métodos , Inflamação/metabolismo , Norepinefrina , Fibrose , Denervação
16.
Br J Pharmacol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982742

RESUMO

BACKGROUND AND PURPOSE: Sodium glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a potent therapy for heart failure with preserved ejection fraction (HFpEF). Hydrogen sulphide (H2S), a well-studied cardioprotective agent, could be beneficial in HFpEF. SGLT2i monotherapy and combination therapy involving an SGLT2i and H2S donor in two preclinical models of cardiometabolic HFpEF was investigated. EXPERIMENTAL APPROACH: Nine-week-old C57BL/6N mice received L-NAME and a 60% high fat diet for five weeks. Mice were then randomized to either control, SGLT2i monotherapy or SGLT2i and H2S donor, SG1002, for five additional weeks. Ten-week-old ZSF1 obese rats were randomized to control, SGLT2i or SGLT2i and SG1002 for 8 weeks. SG1002 monotherapy was investigated in additional animals. Cardiac function (echocardiography and haemodynamics), exercise capacity, glucose handling and multiorgan pathology were monitored during experimental protocols. KEY RESULTS: SGLT2i treatment improved E/e' ratio and treadmill exercise in both models. Combination therapy afforded increases in cardiovascular sulphur bioavailability that coincided with improved left end-diastolic function (E/e' ratio), exercise capacity, metabolic state, cardiorenal fibrosis, and hepatic steatosis. Follow-up studies with SG1002 monotherapy revealed improvements in diastolic function, exercise capacity and multiorgan histopathology. CONCLUSIONS AND IMPLICATIONS: SGLT2i monotherapy remediated pathological complications exhibited by two well-established HFpEF models. Adjunctive H2S therapy resulted in further improvements of cardiometabolic perturbations beyond SGLT2i monotherapy. Follow-up SG1002 monotherapy studies inferred an improved phenotype with combination therapy beyond either monotherapy. These data demonstrate the differing effects of SGLT2i and H2S therapy while also revealing the superior efficacy of the combination therapy in cardiometabolic HFpEF.

17.
J Am Heart Assoc ; 12(4): e028480, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752224

RESUMO

Background Recent studies have suggested that cardiac nitrosative stress mediated by pathological overproduction of nitric oxide (NO) via inducible NO synthase (iNOS) contributes to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). Other studies have suggested that endothelial NO synthase (eNOS) dysfunction and attenuated NO bioavailability contribute to HFpEF morbidity and mortality. We sought to further investigate dysregulated NO signaling and to examine the effects of a NO-based dual therapy (sodium nitrite+hydralazine) following the onset of HFpEF using a "2-hit" murine model. Methods and Results Nine-week-old male C57BL/6 N mice (n=15 per group) were treated concurrently with high-fat diet and N(ω)-nitro-L-arginine methyl ester (L-NAME) (0.5 g/L per day) via drinking water for 10 weeks. At week 5, mice were randomized into either vehicle (normal saline) or combination treatment with sodium nitrite (75 mg/L in the drinking water) and hydralazine (2.0 mg/kg IP, BID). Cardiac structure and function were monitored with echocardiography and invasive hemodynamic measurements. Cardiac mitochondrial respiration, aortic vascular function, and exercise performance were also evaluated. Circulating and myocardial nitrite were measured to determine the bioavailability of NO. Circulating markers of oxidative or nitrosative stress as well as systemic inflammation were also determined. Severe HFpEF was evident by significantly elevated E/E', LVEDP, and Tau in mice treated with L-NAME and HFD, which was associated with impaired NO bioavailability, mitochondrial respiration, aortic vascular function, and exercise capacity. Treatment with sodium nitrite and hydralazine restored NO bioavailability, reduced oxidative and nitrosative stress, preserved endothelial function and mitochondrial respiration, limited the fibrotic response, and improved exercise capacity, ultimately attenuating the severity of "two-hit" HFpEF. Conclusions Our data demonstrate that nitrite, a well-established biomarker of NO bioavailability and a physiological source of NO, is significantly reduced in the heart and circulation in the "2-hit" mouse HFpEF model. Furthermore, sodium nitrite+hydralazine combined therapy significantly attenuated the severity of HFpEF in the "2-hit" cardiometabolic HFpEF. These data suggest that supplementing NO-based therapeutics with a potent antioxidant and vasodilator agent may result in synergistic benefits for the treatment of HFpEF.


Assuntos
Água Potável , Insuficiência Cardíaca , Camundongos , Masculino , Animais , Insuficiência Cardíaca/tratamento farmacológico , Nitrito de Sódio , Volume Sistólico/fisiologia , NG-Nitroarginina Metil Éster , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Hidralazina/farmacologia , Óxido Nítrico Sintase
18.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36602878

RESUMO

Although murine models of coronary atherosclerotic disease have been used extensively to determine mechanisms, limited new therapeutic options have emerged. Pigs with familial hypercholesterolemia (FH pigs) develop complex coronary atheromas that are almost identical to human lesions. We reported previously that insulin-like growth factor 1 (IGF-1) reduced aortic atherosclerosis and promoted features of stable plaque in a murine model. We administered human recombinant IGF-1 or saline (control) in atherosclerotic FH pigs for 6 months. IGF-1 decreased relative coronary atheroma in vivo (intravascular ultrasound) and reduced lesion cross-sectional area (postmortem histology). IGF-1 increased plaque's fibrous cap thickness, and reduced necrotic core, macrophage content, and cell apoptosis, consistent with promotion of a stable plaque phenotype. IGF-1 reduced circulating triglycerides, markers of systemic oxidative stress, and CXCL12 chemokine levels. We used spatial transcriptomics (ST) to identify global transcriptome changes in advanced plaque compartments and to obtain mechanistic insights into IGF-1 effects. ST analysis showed that IGF-1 suppressed FOS/FOSB factors and gene expression of MMP9 and CXCL14 in plaque macrophages, suggesting possible involvement of these molecules in IGF-1's effect on atherosclerosis. Thus, IGF-1 reduced coronary plaque burden and promoted features of stable plaque in a pig model, providing support for consideration of clinical trials.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Hiperlipoproteinemia Tipo II , Placa Aterosclerótica , Camundongos , Humanos , Animais , Suínos , Fator de Crescimento Insulin-Like I/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/patologia
19.
J Surg Res ; 175(1): e25-34, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22316677

RESUMO

BACKGROUND: We evaluated the in vitro strength and in vivo arterial-wall response to an extracellular-matrix-based patch material in a sheep model of carotid artery repair. MATERIALS AND METHODS: A six-ply sheet of acellular, porcine extracellular matrix (ECM) was subjected to in vitro material strength testing and implanted in 15 sheep for 30, 90, and 180 d. Bovine pericardium was used as a control in some animals. In vivo graft patency was assessed by angiography. Explanted grafts were evaluated by histopathology and burst-strength testing. RESULTS: Mean (SD) in vitro suture retention force of the ECM sheet was 14.5 (3.06) N; tensile strength was 29.7 (6.11) N; and probe burst strength was 185 (22.6) N. In vivo, mild stenosis was observed at 30 d for all patches; stenosis was absent at 90 d in the ECM-repaired arteries but not bovine pericardium controls. Pseudoaneurysm was not observed in any animal. Histopathology showed progressive graft degradation, collagen deposition, formation of neocapillaries and fibrocellular neointima, and endothelialization, but no calcification. Mean (SD) burst pressure for unrepaired arteries was 2608 (858) mmHg and 1473 (694) mmHg for ECM-repaired vessels. Mean change in diameter from unloaded state to burst pressure was 29% (9.7) for unrepaired vessels and 24% (13.4) for ECM-repaired vessels. CONCLUSIONS: The six-ply ECM sheet can withstand the forces encountered after carotid artery repair. In sheep, it shows evidence of progressive, constructive remodeling as early as 30 d post-implantation with rapid deposition of endothelium. ECM shows promise as a patch material for CEA repair.


Assuntos
Artérias Carótidas/fisiopatologia , Artérias Carótidas/cirurgia , Matriz Extracelular/fisiologia , Matriz Extracelular/transplante , Próteses e Implantes , Procedimentos Cirúrgicos Vasculares , Animais , Fenômenos Biomecânicos , Modelos Animais , Ovinos , Grau de Desobstrução Vascular
20.
J Clin Invest ; 132(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519539

RESUMO

Atherosclerosis contributes to the majority of deaths related to cardiovascular disease (CVD). Recently, the nonspecific inflammatory biomarker soluble urokinase plasminogen activator receptor (suPAR) has shown prognostic value in patients with CVD; however, it remains unclear whether suPAR participates in the disease process. In this issue of the JCI, Hindy and colleagues report on their evaluation of a multi-ethnic cohort of over 5,000 participants without known CVD. High suPAR levels correlated with incident CVD and atherosclerosis. Genetic analysis revealed two variants associated with the suPAR-encoding gene (PLAUR) with higher plasma suPAR levels. Notably, a mouse model with high suPAR levels possessed aortic tissue with a proinflammatory phenotype, including monocytes with enhanced chemotaxis similar to that seen in atherogenesis. These findings suggest a causal relationship between suPAR and coronary artery calcification and have clinical implications that extend to inflammatory disorders beyond CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Camundongos , Humanos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Doenças Cardiovasculares/genética , Fatores de Risco , Biomarcadores , Aterosclerose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA