Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258543

RESUMO

Cells employ diverse strategies to repair double-strand breaks (DSBs), a dangerous form of DNA damage that threatens genome integrity. Eukaryotic nuclei consist of different chromatin environments, each displaying distinct molecular and biophysical properties that can significantly influence the DSB-repair process. DSBs arising in the compact and silenced heterochromatin domains have been found to move to the heterochromatin periphery in mouse and Drosophila to prevent aberrant recombination events. However, it is poorly understood how chromatin components, such as histone post-translational modifications, contribute to these DSB movements within heterochromatin. Using irradiation as well as locus-specific DSB induction in Drosophila tissues and cultured cells, we find enrichment of histone H3 lysine 9 acetylation (H3K9ac) at DSBs in heterochromatin but not euchromatin. We find this increase is mediated by the histone acetyltransferase dGcn5, which rapidly localizes to heterochromatic DSBs. Moreover, we demonstrate that in the absence of dGcn5, heterochromatic DSBs display impaired recruitment of the SUMO E3 ligase Nse2/Qjt and fail to relocate to the heterochromatin periphery to complete repair. In summary, our results reveal a previously unidentified role for dGcn5 and H3K9ac in heterochromatic DSB repair and underscore the importance of differential chromatin responses at heterochromatic and euchromatic DSBs to promote safe repair.

2.
Science ; 380(6646): 758-764, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37200435

RESUMO

Zebrafish hearts can regenerate by replacing damaged tissue with new cardiomyocytes. Although the steps leading up to the proliferation of surviving cardiomyocytes have been extensively studied, little is known about the mechanisms that control proliferation and redifferentiation to a mature state. We found that the cardiac dyad, a structure that regulates calcium handling and excitation-contraction coupling, played a key role in the redifferentiation process. A component of the cardiac dyad called leucine-rich repeat-containing 10 (Lrrc10) acted as a negative regulator of proliferation, prevented cardiomegaly, and induced redifferentiation. We found that its function was conserved in mammalian cardiomyocytes. This study highlights the importance of the underlying mechanisms required for heart regeneration and their application to the generation of fully functional cardiomyocytes.


Assuntos
Cálcio , Coração , Miócitos Cardíacos , Regeneração , Sarcômeros , Peixe-Zebra , Animais , Cálcio/fisiologia , Proliferação de Células , Coração/fisiologia , Miócitos Cardíacos/fisiologia , Sarcômeros/fisiologia , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA