Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurochem Res ; 46(9): 2463-2472, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34173119

RESUMO

Tweety-homolog 1 protein (Ttyh1) is abundantly expressed in neurons in the healthy brain, and its expression is induced under pathological conditions. In hippocampal neurons in vitro, Ttyh1 was implicated in the regulation of primary neuron morphology. However, the mechanisms that underlie transcriptional regulation of the Ttyh1 gene in neurons remain elusive. The present study sought to identify the promoter of the Ttyh1 gene and functionally characterize cis-regulatory elements that are potentially involved in the transcriptional regulation of Ttyh1 expression in rat dissociated hippocampal neurons in vitro. We cloned a 592 bp rat Ttyh1 promoter sequence and designed deletion constructs of the transcription factors specificity protein 1 (Sp1), E2F transcription factor 3 (E2f3), and achaete-scute homolog 1 (Ascl1) that were fused upstream of a luciferase reporter gene in pGL4.10[luc2]. The luciferase reporter gene assay showed the possible involvement of Ascl1, Sp1, and responsive cis-regulatory elements in Ttyh1 expression. These findings provide novel information about Ttyh1 gene regulation in neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Transcrição E2F3/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas/fisiologia , Fator de Transcrição Sp1/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Transcrição E2F3/genética , Embrião de Mamíferos , Feminino , Camundongos , Gravidez , Ratos Wistar , Alinhamento de Sequência , Fator de Transcrição Sp1/genética
2.
Glia ; 68(6): 1304-1316, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31898841

RESUMO

SorCS2 is an intracellular sorting receptor of the VPS10P domain receptor gene family recently implicated in oxidative stress response. Here, we interrogated the relevance of stress-related activities of SorCS2 in the brain by exploring its role in ischemic stroke in mouse models and in patients. Although primarily seen in neurons in the healthy brain, expression of SorCS2 was massively induced in astrocytes surrounding the ischemic core in mice following stroke. Post-stroke induction was likely a result of increased levels of transforming growth factor ß1 in damaged brain tissue, inducing Sorcs2 gene transcription in astrocytes but not neurons. Induced astrocytic expression of SorCS2 was also seen in stroke patients, substantiating the clinical relevance of this observation. In astrocytes in vitro and in the mouse brain in vivo, SorCS2 specifically controlled release of endostatin, a factor linked to post-stroke angiogenesis. The ability of astrocytes to release endostatin acutely after stroke was lost in mice deficient for SorCS2, resulting in a blunted endostatin response which coincided with impaired vascularization of the ischemic brain. Our findings identified activated astrocytes as a source for endostatin in modulation of post-stroke angiogenesis, and the importance of the sorting receptor SorCS2 in this brain stress response.


Assuntos
Astrócitos/citologia , Endostatinas/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores de Superfície Celular/genética , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Acidente Vascular Cerebral/metabolismo
3.
Front Plant Sci ; 9: 216, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515615

RESUMO

TILLING (Targeting Induced Local Lesions IN Genomes) is a strategy used for functional analysis of genes that combines the classical mutagenesis and a rapid, high-throughput identification of mutations within a gene of interest. TILLING has been initially developed as a discovery platform for functional genomics, but soon it has become a valuable tool in development of desired alleles for crop breeding, alternative to transgenic approach. Here we present the HorTILLUS ( Hordeum-TILLING-University of Silesia) population created for spring barley cultivar "Sebastian" after double-treatment of seeds with two chemical mutagens: sodium azide (NaN3) and N-methyl-N-nitrosourea (MNU). The population comprises more than 9,600 M2 plants from which DNA was isolated, seeds harvested, vacuum-packed, and deposited in seed bank. M3 progeny of 3,481 M2 individuals was grown in the field and phenotyped. The screening for mutations was performed for 32 genes related to different aspects of plant growth and development. For each gene fragment, 3,072-6,912 M2 plants were used for mutation identification using LI-COR sequencer. In total, 382 mutations were found in 182.2 Mb screened. The average mutation density in the HorTILLUS, estimated as 1 mutation per 477 kb, is among the highest mutation densities reported for barley. The majority of mutations were G/C to A/T transitions, however about 8% transversions were also detected. Sixty-one percent of mutations found in coding regions were missense, 37.5% silent and 1.1% nonsense. In each gene, the missense mutations with a potential effect on protein function were identified. The HorTILLUS platform is the largest of the TILLING populations reported for barley and best characterized. The population proved to be a useful tool, both in functional genomic studies and in forward selection of barley mutants with required phenotypic changes. We are constantly renewing the HorTILLUS population, which makes it a permanent source of new mutations. We offer the usage of this valuable resource to the interested barley researchers on cooperative basis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA