Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Genes Dev ; 32(9-10): 695-710, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29785963

RESUMO

The nucleosome remodeling complex RSC functions throughout the yeast genome to set the positions of -1 and +1 nucleosomes and thereby determines the widths of nucleosome-depleted regions (NDRs). The related complex SWI/SNF participates in nucleosome remodeling/eviction and promoter activation at certain yeast genes, including those activated by transcription factor Gcn4, but did not appear to function broadly in establishing NDRs. By analyzing the large cohort of Gcn4-induced genes in mutants lacking the catalytic subunits of SWI/SNF or RSC, we uncovered cooperation between these remodelers in evicting nucleosomes from different locations in the promoter and repositioning the +1 nucleosome downstream to produce wider NDRs-highly depleted of nucleosomes-during transcriptional activation. SWI/SNF also functions on a par with RSC at the most highly transcribed constitutively expressed genes, suggesting general cooperation by these remodelers for maximal transcription. SWI/SNF and RSC occupancies are greatest at the most highly expressed genes, consistent with their cooperative functions in nucleosome remodeling and transcriptional activation. Thus, SWI/SNF acts comparably with RSC in forming wide nucleosome-free NDRs to achieve high-level transcription but only at the most highly expressed genes exhibiting the greatest SWI/SNF occupancies.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética
2.
Methods ; 218: 167-175, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598811

RESUMO

Nucleosomes are the repeating units of chromatin. The presence of nucleosomes poses a major impediment to all DNA-dependent processes. As a result, access to DNA in chromatin is dynamically regulated by many factors, including ATP-dependent chromatin remodeling complexes. Digestion of chromatin by micrococcal nuclease (MNase) followed by chromatin immunoprecipitation (ChIP) and sequencing can be leveraged to determine nucleosome occupancy, positioning, and the ability of chromatin interacting factors to alter chromatin accessibility. Here we describe the procedure for performing MNase and MNase ChIP-seq in detail.


Assuntos
Nucleossomos , Saccharomyces cerevisiae , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Imunoprecipitação da Cromatina
3.
Mol Cell ; 56(5): 653-66, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25457164

RESUMO

ATP-dependent chromatin remodelers regulate chromatin structure during multiple stages of transcription. We report that RSC, an essential chromatin remodeler, is recruited to the open reading frames (ORFs) of actively transcribed genes genome wide, suggesting a role for RSC in regulating transcription elongation. Consistent with such a role, Pol II occupancy in the ORFs of weakly transcribed genes is drastically reduced upon depletion of the RSC catalytic subunit Sth1. RSC inactivation also reduced histone H3 occupancy across transcribed regions. Remarkably, the strongest effects on Pol II and H3 occupancy were confined to the genes displaying the greatest RSC ORF enrichment. Additionally, RSC recruitment to the ORF requires the activities of the SAGA and NuA4 HAT complexes and is aided by the activities of the Pol II CTD Ser2 kinases Bur1 and Ctk1. Overall, our findings strongly implicate ORF-associated RSC in governing Pol II function and in maintaining chromatin structure over transcribed regions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Regulação Fúngica da Expressão Gênica , Fases de Leitura Aberta , Estresse Fisiológico , Transcrição Gênica
4.
Nucleic Acids Res ; 48(15): 8408-8430, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32663283

RESUMO

The chromatin remodelers SWI/SNF and RSC function in evicting promoter nucleosomes at highly expressed yeast genes, particularly those activated by transcription factor Gcn4. Ino80 remodeling complex (Ino80C) can establish nucleosome-depleted regions (NDRs) in reconstituted chromatin, and was implicated in removing histone variant H2A.Z from the -1 and +1 nucleosomes flanking NDRs; however, Ino80C's function in transcriptional activation in vivo is not well understood. Analyzing the cohort of Gcn4-induced genes in ino80Δ mutants has uncovered a role for Ino80C on par with SWI/SNF in evicting promoter nucleosomes and transcriptional activation. Compared to SWI/SNF, Ino80C generally functions over a wider region, spanning the -1 and +1 nucleosomes, NDR and proximal genic nucleosomes, at genes highly dependent on its function. Defects in nucleosome eviction in ino80Δ cells are frequently accompanied by reduced promoter occupancies of TBP, and diminished transcription; and Ino80 is enriched at genes requiring its remodeler activity. Importantly, nuclear depletion of Ino80 impairs promoter nucleosome eviction even in a mutant lacking H2A.Z. Thus, Ino80C acts widely in the yeast genome together with RSC and SWI/SNF in evicting promoter nucleosomes and enhancing transcription, all in a manner at least partly independent of H2A.Z editing.


Assuntos
Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Ativação Transcricional/genética , Adenosina Trifosfatases/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/genética
5.
Mol Cell ; 39(2): 234-46, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20670892

RESUMO

Methylation of histone H3 by Set1 and Set2 is required for deacetylation of nucleosomes in coding regions by histone deacetylase complexes (HDACs) Set3C and Rpd3C(S), respectively. We report that Set3C and Rpd3C(S) are cotranscriptionally recruited in the absence of Set1 and Set2, but in a manner stimulated by Pol II CTD kinase Cdk7/Kin28. Consistently, Rpd3C(S) and Set3C interact with Ser5-phosphorylated Pol II and histones in extracts, but only the histone interactions require H3 methylation. Moreover, reconstituted Rpd3C(S) binds specifically to Ser5-phosphorylated CTD peptides in vitro. Hence, whereas interaction with methylated H3 residues is required for Rpd3C(S) and Set3C deacetylation activities, their cotranscriptional recruitment is stimulated by the phosphorylated CTD. We further demonstrate that Rpd3, Hos2, and Hda1 have overlapping functions in deacetylating histones and suppressing cotranscriptional histone eviction. A strong correlation between increased acetylation and lower histone occupancy in HDA mutants implies that histone acetylation is important for nucleosome eviction.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Histona Desacetilases/metabolismo , Nucleossomos/metabolismo , Fases de Leitura Aberta/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quinases Ciclina-Dependentes/genética , Histona Desacetilases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Nucleossomos/genética , Fosforilação/fisiologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Gene ; 893: 147959, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37923091

RESUMO

RSC (remodels the structure of chromatin) is an essential ATP-dependent chromatin remodeling complex in Saccharomyces cerevisiae. RSC utilizes its ATPase subunit, Sth1, to slide or remove nucleosomes. RSC has been shown to regulate the width of the nucleosome-depleted regions (NDRs) by sliding the flanking nucleosomes away from NDRs. As such, when RSC is depleted, nucleosomes encroach NDRs, leading to transcription initiation defects. In this study, we examined the effects of the catalytic-dead Sth1 on transcription and compared them to those observed during acute and rapid Sth1 depletion by auxin-induced degron strategy. We found that rapid depletion of Sth1 reduces recruitment of TBP and Pol II in highly transcribed genes, as would be expected considering its role in regulating chromatin structure at promoters. In contrast, cells harboring the catalytic-dead Sth1 (sth1-K501R) exhibited a severe reduction in TBP binding, but, surprisingly, also displayed a substantial accumulation in Pol II occupancies within coding regions. The Pol II occupancies further increased upon depleting endogenous Sth1 in the catalytic-dead mutant, suggesting that the inactive Sth1 contributes to Pol II accumulation in coding regions. Notwithstanding the Pol II increase, the ORF occupancies of histone chaperones, FACT and Spt6 were significantly reduced in the mutant. These results suggest a potential role for RSC in recruiting/retaining these chaperones in coding regions. Pol II accumulation despite substantial reductions in TBP, FACT, and Spt6 occupancies in the catalytic-dead mutant could indicate severe transcription elongation and termination defects. Such defects would be consistent with studies showing that RSC is recruited to coding regions in a transcription-dependent manner. Thus, these findings imply a role for RSC in transcription elongation and termination processes, in addition to its established role in transcription initiation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Nucleossomos/genética , Nucleossomos/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
8.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 194995, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37967810

RESUMO

The tripartite interaction between the chromatin remodeler complex RSC, RNA polymerase subunit Rpb5 and prefoldin-like Bud27 is necessary for proper RNA pol II elongation. Indeed lack of Bud27 alters this association and affects transcription elongation. This work investigates the consequences of lack of Bud27 on the chromatin association of RSC and RNA pol II, and on nucleosome positioning. Our results demonstrate that RSC binds chromatin in gene bodies and lack of Bud27 alters this association, mainly around polyA sites. This alteration impacts chromatin organization and leads to the accumulation of RNA pol II molecules around polyA sites, likely due to pausing or arrest. Our data suggest that RSC is necessary to maintain chromatin organization around those sites, and any alteration of this organization results in the widespread use of alternative polyA sites. Finally, we also find a similar molecular phenotype that occurs upon TOR inhibition with rapamycin, which suggests that alternative polyadenylation observed upon TOR inhibition is likely Bud27-dependent.


Assuntos
Chaperonas Moleculares , Fatores de Iniciação de Peptídeos , Proteínas de Saccharomyces cerevisiae , Cromatina/metabolismo , Nucleossomos/metabolismo , Poliadenilação , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo
9.
Mol Cell Biol ; 42(1): e0036821, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34661445

RESUMO

San1 ubiquitin ligase is involved in nuclear protein quality control via its interaction with intrinsically disordered proteins for ubiquitylation and proteasomal degradation. Since several transcription/chromatin regulatory factors contain intrinsically disordered domains and can be inhibitory to transcription when in excess, San1 might be involved in transcription regulation. To address this, we analyzed the role of San1 in the genome-wide association of TATA box binding protein (TBP; which nucleates preinitiation complex [PIC] formation for transcription initiation) and RNA polymerase II (Pol II). Our results reveal the roles of San1 in regulating TBP recruitment to the promoters and Pol II association with the coding sequences and, hence, PIC formation and coordination of elongating Pol II, respectively. Consistently, transcription is altered in the absence of San1. Such transcriptional alteration is associated with impaired ubiquitylation and proteasomal degradation of Spt16 and gene association of Paf1 but not the incorporation of centromeric histone, Cse4, into the active genes in the Δsan1 strain. Collectively, our results demonstrate distinct functions of a nuclear protein quality control factor in regulating the genome-wide PIC formation and elongating Pol II (and hence transcription), thus unraveling new gene regulatory mechanisms.


Assuntos
RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estudo de Associação Genômica Ampla/métodos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Genetics ; 217(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857307

RESUMO

RSC (Remodels the Structure of Chromatin) is a conserved ATP-dependent chromatin remodeling complex that regulates many biological processes, including transcription by RNA polymerase II (Pol II). We report that RSC contributes in generating accessible nucleosomes in transcribed coding sequences (CDSs). RSC MNase ChIP-seq data revealed that RSC-bound nucleosome fragments were very heterogenous (∼80 bp to 180 bp) compared to a sharper profile displayed by the MNase inputs (140 bp to 160 bp), supporting the idea that RSC promotes accessibility of nucleosomal DNA. Notably, RSC binding to +1 nucleosomes and CDSs, but not with -1 nucleosomes, strongly correlated with Pol II occupancies, suggesting that RSC enrichment in CDSs is linked to transcription. We also observed that Pol II associates with nucleosomes throughout transcribed CDSs, and similar to RSC, Pol II-protected fragments were highly heterogenous, consistent with the idea that Pol II interacts with remodeled nucleosomes in CDSs. This idea is supported by the observation that the genes harboring high-levels of Pol II in their CDSs were the most strongly affected by ablating RSC function. Additionally, rapid nuclear depletion of Sth1 decreases nucleosome accessibility and results in accumulation of Pol II in highly transcribed CDSs. This is consistent with a slower clearance of elongating Pol II in cells with reduced RSC function, and is distinct from the effect of RSC depletion on PIC assembly. Altogether, our data provide evidence in support of the role of RSC in promoting Pol II elongation, in addition to its role in regulating transcription initiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Montagem e Desmontagem da Cromatina , DNA Polimerase II/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Nucleossomos/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
11.
Biomolecules ; 11(1)2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379237

RESUMO

Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1. Scaffolds were formed via a Michael addition reaction upon the combination of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups. 3-D scaffold environment maintained the naïve state and supported the long-term growth of ESCs. RNA-sequencing demonstrated significant changes in gene expression profiles between 2-D and 3-D grown cells. Gene ontology analysis revealed upregulation of biological processes involved in the regulation of transcription and translation, extracellular matrix organization, and chromatin remodeling in 3-D grown cells. 3-D culture conditions also induced upregulation of genes associated with Wnt and focal adhesion signaling, while p53 signaling pathway associated genes were downregulated. Our findings, for the first time, provide insight into the possible mechanisms of self-renewal of naïve ESCs stimulated by the transduction of mechanical signals from the 3-D microenvironment.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Microambiente Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Humanos , Polietilenoglicóis/farmacologia , RNA-Seq , Proteína Supressora de Tumor p53/genética , Via de Sinalização Wnt/genética
12.
J Tissue Eng Regen Med ; 13(9): 1738-1755, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31216380

RESUMO

Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro. However, isolated MSCs have been reported to vary in their potency and self-renewal potential. As a result, the MSCs used for clinical applications often lead to variable or even conflicting results. The lack of uniform characterization methods both in vitro and in vivo also contributes to this confusion. Therefore, the name "MSCs" itself has been increasingly questioned lately. As the use of MSCs is expanding rapidly, there is an increasing need to understand the potential sources and specific potencies of MSCs. This review discusses and compares the characteristics of MSCs and suggests that the variations in their distinctive features are dependent on the source and method of isolation as well as epigenetic changes during maintenance and growth. We also discuss the potential opportunities and challenges of MSC research with the hope to stimulate their use for therapeutic and regenerative medicine.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração , Ensaios Clínicos como Assunto , Feto/citologia , Humanos
13.
Mol Cell Biol ; 25(13): 5626-38, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15964818

RESUMO

Transcriptional activation by Gcn4p is dependent on the coactivators SWI/SNF, SAGA, and Srb Mediator, which are recruited by Gcn4p and stimulate assembly of the pre-initiation complex (PIC) at the ARG1 promoter in vivo. We show that recruitment of all three coactivators is nearly simultaneous with binding of Gcn4p at ARG1 and is followed quickly by PIC formation and elongation by RNA polymerase II (Pol II) through the open reading frame. Despite the simultaneous recruitment of coactivators, rapid recruitment of SWI/SNF depends on the histone acetyltransferase (HAT) subunit of SAGA (Gcn5p), a non-HAT function of SAGA, and on Mediator. SAGA recruitment in turn is strongly stimulated by Mediator and the RSC complex. Recruitment of Mediator, by contrast, occurs independently of the other coactivators at ARG1. We confirm the roles of Mediator and SAGA in TATA binding protein (TBP) recruitment and demonstrate that all four coactivators under study enhance Pol II recruitment or promoter clearance following TBP binding. We also present evidence that SWI/SNF and SAGA stimulate transcription elongation downstream from the promoter. These functions can be limited to discrete time intervals, providing evidence for multiple stages in the induction process. Our findings reveal a program of coactivator recruitment and PIC assembly that distinguishes Gcn4p from other yeast activators studied thus far.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Ativação Transcricional , Acetiltransferases/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases , Cinética , Modelos Biológicos , Mutação , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Proteínas Quinases/química , Subunidades Proteicas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Mol Cell Biol ; 25(24): 11171-83, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16314536

RESUMO

The Cyc8p/Tup1p complex mediates repression of diverse genes in Saccharomyces cerevisiae and is recruited by DNA binding proteins specific for the different sets of repressed genes. By screening the yeast deletion library, we identified Cyc8p as a coactivator for Gcn4p, a transcriptional activator of amino acid biosynthetic genes. Deletion of CYC8 confers sensitivity to an inhibitor of isoleucine/valine biosynthesis and impairs activation of Gcn4p-dependent reporters and authentic amino acid biosynthetic target genes. Deletion of TUP1 produces similar but less severe activation defects in vivo. Although expression of Gcn4p is unaffected by deletion of CYC8, chromatin immunoprecipitation assays reveal a strong defect in binding of Gcn4p at the target genes ARG1 and ARG4 in cyc8Delta cells and to a lesser extent in tup1Delta cells. The defects in Gcn4p binding and transcriptional activation in cyc8Delta cells cannot be overcome by Gcn4p overexpression but are partially suppressed in tup1Delta cells. The impairment of Gcn4p binding in cyc8Delta and tup1Delta cells is severe enough to reduce recruitment of SAGA, Srb mediator, TATA binding protein, and RNA polymerase II to the ARG1 and ARG4 promoters, accounting for impaired transcriptional activation of these genes in both mutants. Cyc8p and Tup1p are recruited to the ARG1 and ARG4 promoters, consistent with a direct role for this complex in stimulating Gcn4p occupancy of the upstream activation sequence (UAS). Interestingly, Gcn4p also stimulates binding of Cyc8p/Tup1p at the 3' ends of these genes, raising the possibility that Cyc8p/Tup1p influences transcription elongation. Our findings reveal a novel coactivator function for Cyc8p/Tup1p at the level of activator binding and suggest that Gcn4p may enhance its own binding to the UAS by recruiting Cyc8p/Tup1p.


Assuntos
Argininossuccinato Sintase/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Argininossuccinato Liase , Fatores de Transcrição de Zíper de Leucina Básica , Imunoprecipitação da Cromatina , DNA Polimerase II/metabolismo , Proteínas de Ligação a DNA/genética , Resistência a Medicamentos/genética , Deleção de Genes , Genes Fúngicos/genética , Isoleucina/biossíntese , Isoleucina/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Valina/biossíntese , Valina/genética
15.
Genetics ; 209(3): 743-756, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29695490

RESUMO

Histone chaperones, chromatin remodelers, and histone modifying complexes play a critical role in alleviating the nucleosomal barrier for DNA-dependent processes. Here, we have examined the role of two highly conserved yeast (Saccharomyces cerevisiae) histone chaperones, facilitates chromatin transcription (FACT) and Spt6, in regulating transcription. We show that the H3 tail contributes to the recruitment of FACT to coding sequences in a manner dependent on acetylation. We found that deleting a H3 histone acetyltransferase Gcn5 or mutating lysines on the H3 tail impairs FACT recruitment at ADH1 and ARG1 genes. However, deleting the H4 tail or mutating the H4 lysines failed to dampen FACT occupancy in coding regions. Additionally, we show that FACT depletion reduces RNA polymerase II (Pol II) occupancy genome-wide. Spt6 depletion leads to a reduction in Pol II occupancy toward the 3'-end, in a manner dependent on the gene length. Severe transcription and histone-eviction defects were also observed in a strain that was impaired for Spt6 recruitment (spt6Δ202) and depleted of FACT. Importantly, the severity of the defect strongly correlated with wild-type Pol II occupancies at these genes, indicating critical roles for Spt6 and Spt16 in promoting high-level transcription. Collectively, our results show that both FACT and Spt6 are important for transcription globally and may participate during different stages of transcription.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/metabolismo , Acetilação , Álcool Desidrogenase/genética , Arginase/genética , Proteínas de Ligação a DNA/química , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/química , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética
16.
PLoS One ; 11(2): e0148897, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26848854

RESUMO

Cmr1 (changed mutation rate 1) is a largely uncharacterized nuclear protein that has recently emerged in several global genetic interaction and protein localization studies. It clusters with proteins involved in DNA damage and replication stress response, suggesting a role in maintaining genome integrity. Under conditions of proteasome inhibition or replication stress, this protein localizes to distinct sub-nuclear foci termed as intranuclear quality control (INQ) compartments, which sequester proteins for their subsequent degradation. Interestingly, it also interacts with histones, chromatin remodelers and modifiers, as well as with proteins involved in transcription including subunits of RNA Pol I and Pol III, but not with those of Pol II. It is not known whether Cmr1 plays a role in regulating transcription of Pol II target genes. Here, we show that Cmr1 is recruited to the coding regions of transcribed genes of S. cerevisiae. Cmr1 occupancy correlates with the Pol II occupancy genome-wide, indicating that it is recruited to coding sequences in a transcription-dependent manner. Cmr1-enriched genes include Gcn4 targets and ribosomal protein genes. Furthermore, our results show that Cmr1 recruitment to coding sequences is stimulated by Pol II CTD kinase, Kin28, and the histone deacetylases, Rpd3 and Hos2. Finally, our genome-wide analyses implicate Cmr1 in regulating Pol II occupancy at transcribed coding sequences. However, it is dispensable for maintaining co-transcriptional histone occupancy and histone modification (acetylation and methylation). Collectively, our results show that Cmr1 facilitates transcription by directly engaging with transcribed coding regions.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Código das Histonas , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Histonas/metabolismo , Fases de Leitura Aberta , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Reprod Immunol ; 53(1-2): 67-77, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11730905

RESUMO

To delineate the role of individual zona pellucida (ZP) glycoproteins during sperm-oocyte interaction, bonnet monkey (bm; Macaca radiata) ZPA (bmZPA), ZPB (bmZPB), and ZPC (bmZPC) have been cloned without native signal sequence and transmembrane-like domain, and expressed in Escherichia coli. Recombinant proteins have been purified from the inclusion bodies in presence of low concentration of chaotropic agent (2 M urea) and high pH (pH 12), and subsequently refolded in presence of oxidized and reduced glutathione. Binding of the recombinant refolded zona proteins to bonnet monkey spermatozoa in an indirect immunofluorescence assay revealed that recombinant bmZPC binds to the head region of the capacitated spermatozoa but does not bind to the acrosome reacted spermatozoa. Recombinant bmZPB binds to the principal segment of the acrosomal cap of capacitated bonnet monkey spermatozoa. After induction of acrosome reaction by calcium ionophore A23187, the binding of recombinant bmZPB shifts to the equator, post-acrosome and midpiece of the spermatozoa. bmZPA binds to the principal segment of capacitated spermatozoa but the binding shifts to the equatorial segment, tip of the inner acrosomal membrane and midpiece in acrosome reacted spermatozoa. These studies suggest that polypeptide backbone is sufficient for the binding of ZPA, ZPB and ZPC to spermatozoa in non-human primates. Further studies with recombinant glycosylated zona proteins will help in delineating the role of carbohydrate moieties for higher affinity binding of the ligand to spermatozoa and subsequent signal transduction pathways.


Assuntos
Proteínas do Ovo/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular , Espermatozoides/metabolismo , Acrossomo/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Proteínas do Ovo/genética , Proteínas do Ovo/isolamento & purificação , Escherichia coli/genética , Feminino , Técnicas In Vitro , Macaca radiata , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/isolamento & purificação , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Capacitação Espermática , Interações Espermatozoide-Óvulo/fisiologia , Glicoproteínas da Zona Pelúcida
18.
Reprod Biomed Online ; 2(1): 33-39, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-12537823

RESUMO

Zona pellucida (ZP) glycoproteins have been proposed as candidate antigens for development of immunocontraceptive vaccines. In this study, the efficacy to block fertility by immunization with recombinant bonnet monkey (Macaca radiata) zona pellucida glycoprotein-C (r-bmZPC) expressed in Escherichia coli and its synthetic peptide (P(4): KGDCGTPSHSRRQPHVVSQWSRSA, aa residues 324-347) conjugated to diphtheria toxoid (DT) has been evaluated in a homologous system. Female bonnet monkeys, immunized with P(4)-DT conjugate showed better immunocontraceptive potential as compared to an r-bmZPC-DT immunized group. In spite of high anti-P(4) antibody titres, animals continued to have ovulatory cycles and showed no disturbance in cyclicity (except summer amenorrhoea). No ovarian pathology was observed in the P(4) immunized group. These results suggest that immunization with the P(4) may lead to block in fertility without obvious ovarian dysfunction. However, further inputs are required to identify additional ZP based B-cell epitopes to enhance the contraceptive efficacy.

19.
Mol Cell Biol ; 34(22): 4115-29, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25182531

RESUMO

Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C terminus that recognizes Pol II C-terminal domain (CTD) peptides phosphorylated on Ser2, Ser5, or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' ends of genes, where phosphorylated Ser2 reaches its maximum level. In addition, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' ends of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation, and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo.


Assuntos
Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Chaperonas de Histonas , Fosforilação , Mapas de Interação de Proteínas , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase II/química , Transcrição Gênica
20.
Methods Mol Biol ; 833: 15-27, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22183585

RESUMO

Chromatin immunoprecipitation is widely utilized to determine the in vivo binding of factors that regulate transcription. This procedure entails formaldehyde-mediated cross-linking of proteins and isolation of soluble chromatin followed by shearing. The fragmented chromatin is subjected to immunoprecipitation using antibodies against the protein of interest and the associated DNA is identified using quantitative PCR. Since histones are posttranslationally modified during transcription, this technique can be effectively used to determine the changes in histone modifications that occur during transcription. In this paper, we describe a detailed methodology to determine changes in histone modifications in budding yeast that takes into account reductions in nucleosome.


Assuntos
Histonas/metabolismo , Biologia Molecular/métodos , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Saccharomycetales/genética , Transcrição Gênica , Precipitação Química/efeitos dos fármacos , Imunoprecipitação da Cromatina , Reagentes de Ligações Cruzadas/farmacologia , DNA Fúngico/genética , Nucleossomos/efeitos dos fármacos , Reação em Cadeia da Polimerase , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Saccharomycetales/citologia , Saccharomycetales/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA