Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8016): 401-411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811727

RESUMO

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Assuntos
Hominidae , Cromossomo X , Cromossomo Y , Animais , Feminino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/classificação , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telômero/genética , Cromossomo X/genética , Cromossomo Y/genética , Evolução Molecular , Variações do Número de Cópias de DNA/genética , Humanos , Espécies em Perigo de Extinção , Padrões de Referência
2.
Nature ; 618(7963): 110-117, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198475

RESUMO

A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1-6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7-11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.


Assuntos
Ctenóforos , Filogenia , Animais , Ctenóforos/classificação , Ctenóforos/genética , Genoma/genética , Poríferos/classificação , Poríferos/genética , Sintenia/genética
3.
Cell ; 152(4): 667-8, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415216

RESUMO

One of the strongest signals of positive selection in humans surrounds the V370A variant of Ectodysplasin A receptor (EDAR). However, its phenotypic consequences and impetus for selection are not well understood. Kamberov et al. nail down when it originated and, using transgenic mice, delineate its phenotypic impacts.

4.
Nature ; 611(7936): 519-531, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261518

RESUMO

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Assuntos
Mapeamento Cromossômico , Diploide , Genoma Humano , Genômica , Humanos , Mapeamento Cromossômico/normas , Genoma Humano/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Padrões de Referência , Genômica/métodos , Genômica/normas , Cromossomos Humanos/genética , Variação Genética/genética
5.
Nucleic Acids Res ; 51(13): e69, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37260085

RESUMO

Hybridization capture approaches allow targeted high-throughput sequencing analysis at reduced costs compared to shotgun sequencing. Hybridization capture is particularly useful in analyses of genomic data from ancient, environmental, and forensic samples, where target content is low, DNA is fragmented and multiplex PCR or other targeted approaches often fail. Here, we describe a DNA bait synthesis approach for hybridization capture that we call Circular Nucleic acid Enrichment Reagent, or CNER (pronounced 'snare'). The CNER method uses rolling-circle amplification followed by restriction digestion to discretize microgram quantities of hybridization probes. We demonstrate the utility of the CNER method by generating probes for a panel of 23 771 known sites of single nucleotide polymorphism in the horse genome. Using these probes, we capture and sequence from a panel of ten ancient horse DNA libraries, comparing CNER capture efficiency to a commercially available approach. With about one million read pairs per sample, CNERs captured more targets (90.5% versus 66.5%) at greater mean depth than an alternative commercial approach.


Assuntos
DNA , Genômica , Animais , Cavalos/genética , DNA/genética , Análise de Sequência de DNA/métodos , Hibridização de Ácido Nucleico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
J Hered ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008331

RESUMO

The American black bear, Ursus americanus, is a widespread and ecologically important species in North America. In California, the black bear plays an important role in a variety of ecosystems and serves as an important species for recreational hunting. While research suggests that the populations in California are currently healthy, continued monitoring is critical to maintaining healthy populations, with genomic analyses providing an important surveillance tool. Here we report a high-quality, near chromosome-level genome assembly from a U. americanus sample from California. The primary assembly has a total length of 2.5 Gb contained in 317 scaffolds, a contig N50 of 58.9 Mb, a scaffold N50 of 67.6 Mb, and a BUSCO completeness score of 96%. This U. americanus genome assembly from a California sample will provide an important resource for the targeted management of black bear populations in California, with the goal of achieving an appropriate balance between the recreational value of black bears and the maintenance of viable populations. The high quality of this genome assembly will also make it a valuable resource for comparative genomic analyses among black bear populations and among bear species.

7.
Cell ; 134(3): 416-26, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18692465

RESUMO

A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000 year-old Neandertal individual with 8341 mtDNA sequences identified among 4.8 Gb of DNA generated from approximately 0.3 g of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs, and allows an estimate of the divergence date between the two mtDNA lineages of 660,000 +/- 140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared with other primate lineages, suggesting that the effective population size of Neandertals was small.


Assuntos
Evolução Molecular , Fósseis , Hominidae/genética , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Osso e Ossos/metabolismo , Croácia , Ciclo-Oxigenase 2/química , DNA Mitocondrial/genética , Genoma Mitocondrial , Humanos , Modelos Moleculares , Dados de Sequência Molecular
8.
J Hered ; 114(5): 504-512, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37381815

RESUMO

Several methods exist for detecting genetic relatedness or identity by comparing DNA information. These methods generally require genotype calls, either single-nucleotide polymorphisms or short tandem repeats, at the sites used for comparison. For some DNA samples, like those obtained from bone fragments or single rootless hairs, there is often not enough DNA present to generate genotype calls that are accurate and complete enough for these comparisons. Here, we describe IBDGem, a fast and robust computational procedure for detecting genomic regions of identity-by-descent by comparing low-coverage shotgun sequence data against genotype calls from a known query individual. At less than 1× genome coverage, IBDGem reliably detects segments of relatedness and can make high-confidence identity detections with as little as 0.01× genome coverage.


Assuntos
Genoma , Genômica , Genótipo , Análise de Sequência de DNA , DNA , Polimorfismo de Nucleotídeo Único , Sequenciamento de Nucleotídeos em Larga Escala/métodos
9.
J Hered ; 114(1): 35-43, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146896

RESUMO

The Javan gibbon, Hylobates moloch, is an endangered gibbon species restricted to the forest remnants of western and central Java, Indonesia, and one of the rarest of the Hylobatidae family. Hylobatids consist of 4 genera (Holoock, Hylobates, Symphalangus, and Nomascus) that are characterized by different numbers of chromosomes, ranging from 38 to 52. The underlying cause of this karyotype plasticity is not entirely understood, at least in part, due to the limited availability of genomic data. Here we present the first scaffold-level assembly for H. moloch using a combination of whole-genome Illumina short reads, 10X Chromium linked reads, PacBio, and Oxford Nanopore long reads and proximity-ligation data. This Hylobates genome represents a valuable new resource for comparative genomics studies in primates.


Assuntos
Genoma , Hylobates , Animais , Hylobates/genética , Florestas , Espécies em Perigo de Extinção , Indonésia
10.
Nucleic Acids Res ; 48(8): e47, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32112100

RESUMO

Biological and chemical DNA fragmentation generates DNA molecules with a variety of termini, including blunt ends and single-stranded overhangs. We have developed a Next Generation Sequencing (NGS) assay, XACTLY, to interrogate the termini of fragmented DNA, information traditionally lost in standard NGS library preparation methods. Here we describe the XACTLY method, showcase its sensitivity and specificity, and demonstrate its utility in in vitro experiments. The XACTLY assay is able to report relative abundances of all lengths and types (5' and 3') of single-stranded overhangs, if present, on each DNA fragment with an overall accuracy between 80-90%. In addition, XACTLY retains the sequence of each native DNA molecule after fragmentation and can capture the genomic landscape of cleavage events at single nucleotide resolution. The XACTLY assay can be applied as a novel research and discovery tool for fragmentation analyses and in cell-free DNA.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Ácidos Nucleicos Livres/sangue , DNA/química , Desoxirribonuclease I , Humanos , Nuclease do Micrococo
11.
Nucleic Acids Res ; 48(13): e75, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32491177

RESUMO

A high quality genome assembly is a vital first step for the study of an organism. Recent advances in technology have made the creation of high quality chromosome scale assemblies feasible and low cost. However, the amount of input DNA needed for an assembly project can be a limiting factor for small organisms or precious samples. Here we demonstrate the feasibility of creating a chromosome scale assembly using a hybrid method for a low input sample, a single outbred Drosophila melanogaster. Our approach combines an Illumina shotgun library, Oxford nanopore long reads, and chromosome conformation capture for long range scaffolding. This single fly genome assembly has a N50 of 26 Mb, a length that encompasses entire chromosome arms, contains 95% of expected single copy orthologs, and a nearly complete assembly of this individual's Wolbachia endosymbiont. The methods described here enable the accurate and complete assembly of genomes from small, field collected organisms as well as precious clinical samples.


Assuntos
Cromossomos Bacterianos/genética , Cromossomos de Insetos/genética , Drosophila melanogaster/genética , Genoma Bacteriano/genética , Genoma de Inseto/genética , Wolbachia/genética , Animais , Genômica/métodos
12.
Genome Res ; 28(7): 983-997, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29914971

RESUMO

The relationship between evolutionary genome remodeling and the three-dimensional structure of the genome remain largely unexplored. Here, we use the heavily rearranged gibbon genome to examine how evolutionary chromosomal rearrangements impact genome-wide chromatin interactions, topologically associating domains (TADs), and their epigenetic landscape. We use high-resolution maps of gibbon-human breaks of synteny (BOS), apply Hi-C in gibbon, measure an array of epigenetic features, and perform cross-species comparisons. We find that gibbon rearrangements occur at TAD boundaries, independent of the parameters used to identify TADs. This overlap is supported by a remarkable genetic and epigenetic similarity between BOS and TAD boundaries, namely presence of CpG islands and SINE elements, and enrichment in CTCF and H3K4me3 binding. Cross-species comparisons reveal that regions orthologous to BOS also correspond with boundaries of large (400-600 kb) TADs in human and other mammalian species. The colocalization of rearrangement breakpoints and TAD boundaries may be due to higher chromatin fragility at these locations and/or increased selective pressure against rearrangements that disrupt TAD integrity. We also examine the small portion of BOS that did not overlap with TAD boundaries and gave rise to novel TADs in the gibbon genome. We postulate that these new TADs generally lack deleterious consequences. Last, we show that limited epigenetic homogenization occurs across breakpoints, irrespective of their time of occurrence in the gibbon lineage. Overall, our findings demonstrate remarkable conservation of chromatin interactions and epigenetic landscape in gibbons, in spite of extensive genomic shuffling.


Assuntos
Epigênese Genética/genética , Genoma/genética , Animais , Cromatina/genética , Ilhas de CpG/genética , Epigenômica/métodos , Genômica/métodos , Humanos , Sintenia/genética
13.
J Hered ; 112(3): 241-249, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33768239

RESUMO

We present a protocol to prepare extracted DNA for sequencing on the Illumina sequencing platform that has been optimized for ancient and degraded DNA. Our approach, the Santa Cruz Reaction or SCR, uses directional splinted ligation of Illumina's P5 and P7 adapters to convert natively single-stranded DNA and heat denatured double-stranded DNA into sequencing libraries in a single enzymatic reaction. To demonstrate its efficacy in converting degraded DNA molecules, we prepare 5 ancient DNA extracts into sequencing libraries using the SCR and 2 of the most commonly used approaches for preparing degraded DNA for sequencing: BEST, which targets and converts double-stranded DNA, and ssDNA2.0, which targets and converts single-stranded DNA. We then compare the efficiency with which each approach recovers unique molecules, or library complexity, given a standard amount of DNA input. We find that the SCR consistently outperforms the BEST protocol in recovering unique molecules and, despite its relative simplicity to perform and low cost per library, has similar performance to ssDNA2.0 across a wide range of DNA inputs. The SCR is a cost- and time-efficient approach that minimizes the loss of unique molecules and makes accessible a taxonomically, geographically, and a temporally broader sample of preserved remains for genomic analysis.


Assuntos
DNA Antigo , Sequenciamento de Nucleotídeos em Larga Escala , Biblioteca Gênica , Biblioteca Genômica , Análise de Sequência de DNA
14.
J Hered ; 112(4): 377-384, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33882130

RESUMO

The Andean bear is the only extant member of the Tremarctine subfamily and the only extant ursid species to inhabit South America. Here, we present an annotated de novo assembly of a nuclear genome from a captive-born female Andean bear, Mischief, generated using a combination of short and long DNA and RNA reads. Our final assembly has a length of 2.23 Gb, and a scaffold N50 of 21.12 Mb, contig N50 of 23.5 kb, and BUSCO score of 88%. The Andean bear genome will be a useful resource for exploring the complex phylogenetic history of extinct and extant bear species and for future population genetics studies of Andean bears.


Assuntos
Ursidae , Animais , Núcleo Celular , Feminino , Genoma , Anotação de Sequência Molecular , Filogenia , América do Sul , Ursidae/genética
15.
J Hered ; 112(2): 184-191, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33438035

RESUMO

Genomics research has relied principally on the establishment and curation of a reference genome for the species. However, it is increasingly recognized that a single reference genome cannot fully describe the extent of genetic variation within many widely distributed species. Pangenome representations are based on high-quality genome assemblies of multiple individuals and intended to represent the broadest possible diversity within a species. A Bovine Pangenome Consortium (BPC) has recently been established to begin assembling genomes from more than 600 recognized breeds of cattle, together with other related species to provide information on ancestral alleles and haplotypes. Previously reported de novo genome assemblies for Angus, Brahman, Hereford, and Highland breeds of cattle are part of the initial BPC effort. The present report describes a complete single haplotype assembly at chromosome-scale for a fullblood Simmental cow from an F1 bison-cattle hybrid fetus by trio binning. Simmental cattle, also known as Fleckvieh due to their red and white spots, originated in central Europe in the 1830s as a triple-purpose breed selected for draught, meat, and dairy production. There are over 50 million Simmental cattle in the world, known today for their fast growth and beef yields. This assembly (ARS_Simm1.0) is similar in length to the other bovine assemblies at 2.86 Gb, with a scaffold N50 of 102 Mb (max scaffold 156.8 Mb) and meets or exceeds the continuity of the best Bos taurus reference assemblies to date.


Assuntos
Bovinos/genética , Genoma , Animais , Bison , Mapeamento Cromossômico , Feminino , Haplótipos , Masculino
16.
J Hered ; 112(2): 174-183, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33595645

RESUMO

Bison are an icon of the American West and an ecologically, commercially, and culturally important species. Despite numbering in the hundreds of thousands today, conservation concerns remain for the species, including the impact on genetic diversity of a severe bottleneck around the turn of the 20th century and genetic introgression from domestic cattle. Genetic diversity and admixture are best evaluated at genome-wide scale, for which a high-quality reference is necessary. Here, we use trio binning of long reads from a bison-Simmental cattle (Bos taurus taurus) male F1 hybrid to sequence and assemble the genome of the American plains bison (Bison bison bison). The male haplotype genome is chromosome-scale, with a total length of 2.65 Gb across 775 scaffolds (839 contigs) and a scaffold N50 of 87.8 Mb. Our bison genome is ~13× more contiguous overall and ~3400× more contiguous at the contig level than the current bison reference genome. The bison genome sequence presented here (ARS-UCSC_bison1.0) will enable new research into the evolutionary history of this iconic megafauna species and provide a new tool for the management of bison populations in federal and commercial herds.


Assuntos
Bison/genética , Genoma , Animais , Bovinos/genética , Mapeamento Cromossômico , Feminino , Variação Genética , Haplótipos , Hibridização Genética , Masculino
17.
Proc Natl Acad Sci U S A ; 115(39): 9726-9731, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201725

RESUMO

High-throughput short-read sequencing has revolutionized how transcriptomes are quantified and annotated. However, while Illumina short-read sequencers can be used to analyze entire transcriptomes down to the level of individual splicing events with great accuracy, they fall short of analyzing how these individual events are combined into complete RNA transcript isoforms. Because of this shortfall, long-distance information is required to complement short-read sequencing to analyze transcriptomes on the level of full-length RNA transcript isoforms. While long-read sequencing technology can provide this long-distance information, there are issues with both Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) long-read sequencing technologies that prevent their widespread adoption. Briefly, PacBio sequencers produce low numbers of reads with high accuracy, while ONT sequencers produce higher numbers of reads with lower accuracy. Here, we introduce and validate a long-read ONT-based sequencing method. At the same cost, our Rolling Circle Amplification to Concatemeric Consensus (R2C2) method generates more accurate reads of full-length RNA transcript isoforms than any other available long-read sequencing method. These reads can then be used to generate isoform-level transcriptomes for both genome annotation and differential expression analysis in bulk or single-cell samples.


Assuntos
DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Linfócitos B/metabolismo , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Isoformas de RNA/genética , Reprodutibilidade dos Testes
18.
Genome Res ; 27(5): 686-696, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28137821

RESUMO

The American alligator, Alligator mississippiensis, like all crocodilians, has temperature-dependent sex determination, in which the sex of an embryo is determined by the incubation temperature of the egg during a critical period of development. The lack of genetic differences between male and female alligators leaves open the question of how the genes responsible for sex determination and differentiation are regulated. Insight into this question comes from the fact that exposing an embryo incubated at male-producing temperature to estrogen causes it to develop ovaries. Because estrogen response elements are known to regulate genes over long distances, a contiguous genome assembly is crucial for predicting and understanding their impact. We present an improved assembly of the American alligator genome, scaffolded with in vitro proximity ligation (Chicago) data. We use this assembly to scaffold two other crocodilian genomes based on synteny. We perform RNA sequencing of tissues from American alligator embryos to find genes that are differentially expressed between embryos incubated at male- versus female-producing temperature. Finally, we use the improved contiguity of our assembly along with the current model of CTCF-mediated chromatin looping to predict regions of the genome likely to contain estrogen-responsive genes. We find that these regions are significantly enriched for genes with female-biased expression in developing gonads after the critical period during which sex is determined by incubation temperature. We thus conclude that estrogen signaling is a major driver of female-biased gene expression in the post-temperature sensitive period gonads.


Assuntos
Jacarés e Crocodilos/genética , Sequência Conservada , Estrogênios/genética , Genoma , Transdução de Sinais , Jacarés e Crocodilos/embriologia , Animais , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Mapeamento de Sequências Contíguas , Estrogênios/metabolismo , Feminino , Masculino , Análise de Sequência de DNA , Processos de Determinação Sexual/genética , Sintenia
19.
Nature ; 505(7481): 43-9, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24352235

RESUMO

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.


Assuntos
Fósseis , Genoma/genética , Homem de Neandertal/genética , África , Animais , Cavernas , Variações do Número de Cópias de DNA/genética , Feminino , Fluxo Gênico/genética , Frequência do Gene , Heterozigoto , Humanos , Endogamia , Modelos Genéticos , Homem de Neandertal/classificação , Filogenia , Densidade Demográfica , Sibéria/etnologia , Falanges dos Dedos do Pé/anatomia & histologia
20.
BMC Genomics ; 20(1): 1023, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881841

RESUMO

BACKGROUND: Cell-free DNA (cfDNA), present in circulating blood plasma, contains information about prenatal health, organ transplant reception, and cancer presence and progression. Originally developed for the genomic analysis of highly degraded ancient DNA, single-stranded DNA (ssDNA) library preparation methods are gaining popularity in the field of cfDNA analysis due to their efficiency and ability to convert short, fragmented DNA into sequencing libraries without altering DNA ends. However, current ssDNA methods are costly and time-consuming. RESULTS: Here we present an efficient ligation-based single-stranded library preparation method that is engineered to produce complex libraries in under 2.5 h from as little as 1 nanogram of input DNA without alteration to the native ends of template molecules. Our method, called Single Reaction Single-stranded LibrarY or SRSLY, ligates uniquely designed Next-Generation Sequencing (NGS) adapters in a one-step combined phosphorylation/ligation reaction that foregoes end-polishing. Using synthetic DNA oligos and cfDNA, we demonstrate the efficiency and utility of this approach and compare with existing double-stranded and single-stranded approaches for library generation. Finally, we demonstrate that cfDNA NGS data generated from SRSLY can be used to analyze DNA fragmentation patterns to deduce nucleosome positioning and transcription factor binding. CONCLUSIONS: SRSLY is a versatile tool for converting short and fragmented DNA molecules, like cfDNA fragments, into sequencing libraries while retaining native lengths and ends.


Assuntos
Ácidos Nucleicos Livres , DNA de Cadeia Simples , Biblioteca Gênica , Oligonucleotídeos/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Oligonucleotídeos/síntese química , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA