Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 95, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849889

RESUMO

BACKGROUND: Breast cancers treated with aromatase inhibitors (AIs) can develop AI resistance, which is often driven by estrogen receptor-alpha (ERα/ESR1) activating mutations, as well as by ER-independent signaling pathways. The breast ER antagonist lasofoxifene, alone or combined with palbociclib, elicited antitumor activities in a xenograft model of ER + metastatic breast cancer (mBC) harboring ESR1 mutations. The current study investigated the activity of LAS in a letrozole-resistant breast tumor model that does not have ESR1 mutations. METHODS: Letrozole-resistant, MCF7 LTLT cells tagged with luciferase-GFP were injected into the mammary duct inguinal glands of NSG mice (MIND model; 6 mice/group). Mice were randomized to vehicle, lasofoxifene ± palbociclib, fulvestrant ± palbociclib, or palbociclib alone 2-3 weeks after cell injections. Tumor growth and metastases were monitored with in vivo and ex vivo luminescence imaging, terminal tumor weight measurements, and histological analysis. The experiment was repeated with the same design and 8-9 mice in each treatment group. RESULTS: Western blot analysis showed that the MCF7 LTLT cells had lower ERα and higher HER2 expressions compared with normal MCF7 cells. Lasofoxifene ± palbociclib, but not fulvestrant, significantly reduced primary tumor growth versus vehicle as assessed by in vivo imaging of tumors at study ends. Percent tumor area in excised mammary glands was significantly lower for lasofoxifene plus palbociclib versus vehicle. Ki67 staining showed decreased overall tumor cell proliferation with lasofoxifene ± palbociclib. The lasofoxifene + palbociclib combination was also associated with significantly fewer bone metastases compared with vehicle. Similar results were observed in the repeat experiment. CONCLUSIONS: In a mouse model of letrozole-resistant breast cancer with no ESR1 mutations, reduced levels of ERα, and overexpression of HER2, lasofoxifene alone or combined with palbociclib inhibited primary tumor growth more effectively than fulvestrant. Lasofoxifene plus palbociclib also reduced bone metastases. These results suggest that lasofoxifene alone or combined with a CDK4/6 inhibitor may offer benefits to patients who have ER-low and HER2-positive, AI-resistant breast cancer, independent of ESR1 mutations.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Pirrolidinas , Tetra-Hidronaftalenos , Animais , Feminino , Humanos , Camundongos , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Fulvestranto/farmacologia , Letrozol/farmacologia , Células MCF-7 , Piperazinas/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biophys J ; 121(19): 3651-3662, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35778844

RESUMO

Mutations of the intracellular estrogen receptor alpha (ERα) is implicated in 70% of breast cancers. Therefore, it is of considerable interest to image various mutants (L536S, Y537S, D538G) in living cancer cell lines, particularly as a function of various anticancer drugs. We therefore developed a small (13 kDa) Affimer, which, after fluorescent labeling, is able to efficiently label ERα by traveling through temporary pores in the cell membrane, created by the toxin streptolysin O. The Affimer, selected by a phage display, predominantly labels the Y537S mutant and can tell the difference between L536S and D538G mutants. The vast majority of Affimer-ERαY537S is in the nucleus and is capable of an efficient, unrestricted navigation to its target DNA sequence, as visualized by single-molecule fluorescence. The Affimer can also differentiate the effect of selective estrogen receptor modulators. More generally, this is an example of a small binding reagent-an Affimer protein-that can be inserted into living cells with minimal perturbation and high efficiency, to image an endogenous protein.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Mutação , Receptores de Estrogênio/genética , Receptores de Estrogênio/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico
3.
Breast Cancer Res ; 24(1): 19, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264224

RESUMO

BACKGROUND: While estrogen receptor (ER) positive breast tumors generally respond well to endocrine therapy (ET), up to 40% of patients will experience relapse, either while on endocrine therapy or after ET is completed. We previously demonstrated that the selective pressure of tamoxifen activates the NFκB pathway in ER + patient tumors, breast cancer cell lines, and breast cancer xenograft tumors, and that this activation allows for survival of a subpopulation of NFκB + cells that contribute to cell regrowth and tumor relapse after ET withdrawal. However, the mechanisms contributing to the expansion of an NFκB + cell population on ET are unknown. METHODS: Here, we utilized single-cell RNA sequencing and bioinformatics approaches to characterize the NFκB + cell population and its clinical relevance. Follow-up studies were conducted to validate our findings and assess the function of the integrated stress response pathway in breast cancer cell lines and patient-derived models. RESULTS: We found that the NFκB + population that arises in response to ET is a preexisting population is enriched under the selective pressure of ET. Based on the preexisting NFκB + cell population, we developed a gene signature and found that it is predictive of tumor relapse when expressed in primary ER + tumors and is retained in metastatic cell populations. Moreover, we identified that the integrated stress response (ISR), as indicated by increased phosphorylation of eIF2α, occurs in response to ET and contributes to clonogenic growth under the selective pressure of ET. CONCLUSIONS: Taken together, our findings suggest that a cell population with active NFκB and ISR signaling can survive and expand under the selective pressure of ET and that targeting this population may be a viable therapeutic strategy to improve patient outcome by eliminating cells that survive ET. Understanding the mechanisms by which breast cancer cells survive the selective pressure of ET may improve relapse rates and overall outcome for patients with ER + breast tumors.


Assuntos
Neoplasias da Mama , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Transdução de Sinais , Tamoxifeno/uso terapêutico
4.
Breast Cancer Res ; 23(1): 54, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980285

RESUMO

BACKGROUND: Endocrine therapy remains the mainstay of treatment for estrogen receptor-positive (ER+) breast cancer. Constitutively active mutations in the ligand binding domain of ERα render tumors resistant to endocrine agents. Breast cancers with the two most common ERα mutations, Y537S and D538G, have low sensitivity to fulvestrant inhibition, a typical second-line endocrine therapy. Lasofoxifene is a selective estrogen receptor modulator with benefits on bone health and breast cancer prevention potential. This study investigated the anti-tumor activity of lasofoxifene in breast cancer xenografts expressing Y537S and D538G ERα mutants. The combination of lasofoxifene with palbociclib, a CDK4/6 inhibitor, was also evaluated. METHODS: Luciferase-GFP tagged MCF7 cells bearing wild-type, Y537S, or D538G ERα were injected into the mammary ducts of NSG mice (MIND model), which were subsequently treated with lasofoxifene or fulvestrant as single agents or in combination with palbociclib. Tumor growth and metastasis were monitored with in vivo and ex vivo luminescence imaging, terminal tumor weight measurements, and histological analysis. RESULTS: As a monotherapy, lasofoxifene was more effective than fulvestrant at inhibiting primary tumor growth and reducing metastases. Adding palbociclib improved the effectiveness of both lasofoxifene and fulvestrant for tumor suppression and metastasis prevention at four distal sites (lung, liver, bone, and brain), with the combination of lasofoxifene/palbociclib being generally more potent than that of fulvestrant/palbociclib. X-ray crystallography of the ERα ligand binding domain (LBD) shows that lasofoxifene stabilizes an antagonist conformation of both wild-type and Y537S LBD. The ability of lasofoxifene to promote an antagonist conformation of Y537S, combined with its long half-life and bioavailability, likely contributes to the observed potent inhibition of primary tumor growth and metastasis of MCF7 Y537S cells. CONCLUSIONS: We report for the first time the anti-tumor activity of lasofoxifene in mouse models of endocrine therapy-resistant breast cancer. The results demonstrate the potential of using lasofoxifene as an effective therapy for women with advanced or metastatic ER+ breast cancers expressing the most common constitutively active ERα mutations.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Pirrolidinas/uso terapêutico , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tetra-Hidronaftalenos/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Feminino , Fulvestranto/uso terapêutico , Humanos , Células MCF-7 , Camundongos , Mutação , Metástase Neoplásica/prevenção & controle , Piperazinas/uso terapêutico , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Pirrolidinas/química , Receptores de Estrogênio/genética , Moduladores Seletivos de Receptor Estrogênico/química , Tetra-Hidronaftalenos/química , Resultado do Tratamento
5.
Mol Pharmacol ; 98(1): 24-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362585

RESUMO

High-dose synthetic estrogen therapy was the standard treatment of advanced breast cancer for three decades until the discovery of tamoxifen. A range of substituted triphenylethylene synthetic estrogens and diethylstilbestrol were used. It is now known that low doses of estrogens can cause apoptosis in long-term estrogen deprived (LTED) breast cancer cells resistant to antiestrogens. This action of estrogen can explain the reduced breast cancer incidence in postmenopausal women over 60 who are taking conjugated equine estrogens and the beneficial effect of low-dose estrogen treatment of patients with acquired aromatase inhibitor resistance in clinical trials. To decipher the molecular mechanism of estrogens at the estrogen receptor (ER) complex by different types of estrogens-planar [17ß-estradiol (E2)] and angular triphenylethylene (TPE) derivatives-we have synthesized a small series of compounds with either no substitutions on the TPE phenyl ring containing the antiestrogenic side chain of endoxifen or a free hydroxyl. In the first week of treatment with E2 the LTED cells undergo apoptosis completely. By contrast, the test TPE derivatives act as antiestrogens with a free para-hydroxyl on the phenyl ring that contains an antiestrogenic side chain in endoxifen. This inhibits early E2-induced apoptosis if a free hydroxyl is present. No substitution at the site occupied by the antiestrogenic side chain of endoxifen results in early apoptosis similar to planar E2 The TPE compounds recruit coregulators to the ER differentially and predictably, leading to delayed apoptosis in these cells. SIGNIFICANCE STATEMENT: In this paper we investigate the role of the structure-function relationship of a panel of synthetic triphenylethylene (TPE) derivatives and a novel mechanism of estrogen-induced cell death in breast cancer, which is now clinically relevant. Our study indicates that these TPE derivatives, depending on the positioning of the hydroxyl groups, induce various conformations of the estrogen receptor's ligand-binding domain, which in turn produces differential recruitment of coregulators and subsequently different apoptotic effects on the antiestrogen-resistant breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Antagonistas de Estrogênios/síntese química , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estilbenos/síntese química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estradiol/química , Estradiol/farmacologia , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Estilbenos/química , Estilbenos/farmacologia , Relação Estrutura-Atividade
6.
J Am Chem Soc ; 141(41): 16374-16381, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31523967

RESUMO

Macrocyclization can improve bioactive peptide ligands through preorganization of molecular topology, leading to improvement of pharmacologic properties like binding affinity, cell permeability, and metabolic stability. Here we demonstrate that Diels-Alder [4 + 2] cycloadditions can be harnessed for peptide macrocyclization and stabilization within a range of peptide scaffolds and chemical environments. Diels-Alder cyclization of diverse diene-dienophile reactive pairs proceeds rapidly, in high yield and with tunable stereochemical preferences on solid-phase or in aqueous solution. This reaction can be applied alone or in concert with other stabilization chemistries, such as ring-closing olefin metathesis, to stabilize loop, turn, and α-helical secondary structural motifs. NMR and molecular dynamics studies of model loop peptides confirmed preferential formation of endo cycloadduct stereochemistry, imparting significant structural rigidity to the peptide backbone that resulted in augmented protease resistance and increased biological activity of a Diels-Alder cyclized (DAC) RGD peptide. Separately, we demonstrated the stabilization of DAC α-helical peptides derived from the ERα-binding protein SRC2. We solved a 2.25 Å cocrystal structure of one DAC helical peptide bound to ERα, which unequivocally corroborated endo stereochemistry of the resulting Diels-Alder adduct, and confirmed that the unique architecture of stabilizing motifs formed with this chemistry can directly contribute to target binding. These data establish Diels-Alder cyclization as a versatile approach to stabilize diverse protein structural motifs under a range of chemical environments.


Assuntos
Reação de Cicloadição , Compostos Macrocíclicos/química , Peptídeos/química , Modelos Moleculares , Estrutura Molecular , Peptídeo Hidrolases/metabolismo , Conformação Proteica
7.
Mol Pharmacol ; 94(2): 812-822, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739819

RESUMO

Estrogen therapy was used to treat advanced breast cancer in postmenopausal women for decades until the introduction of tamoxifen. Resistance to long-term estrogen deprivation (LTED) with tamoxifen and aromatase inhibitors used as a treatment of breast cancer inevitably occurs, but unexpectedly low-dose estrogen can cause regression of breast cancer and increase disease-free survival in some patients. This therapeutic effect is attributed to estrogen-induced apoptosis in LTED breast cancer. Here, we describe modulation of the estrogen receptor (ER) liganded with antiestrogens (endoxifen and 4-hydroxytamoxifen) and an estrogenic triphenylethylene (TPE), ethoxytriphenylethylene (EtOXTPE), on estrogen-induced apoptosis in LTED breast cancer cells. Our results show that the angular TPE estrogen (EtOXTPE) is able to induce the ER-mediated apoptosis only at a later time compared with planar estradiol in these cells. Using real-time polymerase chain reaction, chromatin immunoprecipitation, western blotting, molecular modeling, and X-ray crystallography techniques, we report novel conformations of the ER complex with an angular estrogen EtOXTPE and endoxifen. We propose that alteration of the conformation of the ER complexes, with changes in coactivator binding, governs estrogen-induced apoptosis through the protein kinase regulated by RNA-like endoplasmic reticulum kinase sensor system to trigger an unfolded protein response.


Assuntos
Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Estilbenos/farmacologia , Tamoxifeno/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Receptores de Estrogênio/genética , Estilbenos/química , Tamoxifeno/química , Tamoxifeno/farmacologia
8.
Org Biomol Chem ; 16(20): 3702-3706, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29725689

RESUMO

A new computational approach to obtain quantitative energy profiles for helix folding was used in the design of orthogonal hydrocarbon and lactam bicyclic peptides. The proteolytically stable, "cross-stitched" peptide SRC2-BCP1 shows nanomolar affinity for estrogen receptor α and X-ray crystallography confirms a helical binding pose.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Proteólise , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Receptor alfa de Estrogênio/metabolismo , Modelos Moleculares , Conformação Proteica em alfa-Hélice
9.
Xenobiotica ; 48(10): 973-983, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29050522

RESUMO

1. There is limited knowledge regarding the metabolism of megestrol acetate (MA), as it was approved by FDA in 1971, prior to the availability of modern tools for identifying specific drug-metabolizing enzymes. We determined the cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) that metabolize MA, identified oxidative metabolites and determined pharmacologic activity at the progesterone, androgen and glucocorticoid receptors (PR, AR and GR, respectively). 2. Oxidative metabolites were produced using human liver microsomes (HLMs), and isolated for mass spectral (MS) and nuclear magnetic resonance (NMR) analyses. We screened recombinant P450s using MA at 62 µM (HLM Km for metabolite 1; M1) and 28 µM (HLM Km for metabolite 2; M2). UGT isoforms were simultaneously incubated with UDPGA, nicotinamide adenine dinucleotide phosphate (NADPH), CYP3A4 and MA. Metabolites were evaluated for pharmacologic activity on the PR, AR and GR. CYP3A4 and CYP3A5 are responsible for oxidative metabolism of 62 µM MA. 3. At 28 µM substrate concentration, CYP3A4 was the only contributing enzyme. Mass spectral and NMR data suggest metabolism of MA to two alcohols. After oxidation, MA is converted into two secondary glucuronides by UGT2B17 among other UGTs. MA, M1 and M2 had significant pharmacologic activity on the PR while only MA showed activity on the AR and GR.


Assuntos
Acetato de Megestrol/metabolismo , Metaboloma , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Glucuronídeos/metabolismo , Humanos , Cetoconazol/farmacologia , Cinética , Acetato de Megestrol/química , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxirredução , Antígeno Prostático Específico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Troleandomicina/farmacologia
10.
Angew Chem Int Ed Engl ; 55(13): 4252-5, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26928945

RESUMO

"Stapled" peptides are typically designed to replace two non-interacting residues with a constraining, olefinic staple. To mimic interacting leucine and isoleucine residues, we have created new amino acids that incorporate a methyl group in the γ-position of the stapling amino acid S5. We have incorporated them into a sequence derived from steroid receptor coactivator 2, which interacts with estrogen receptor α. The best peptide (IC50 =89 nm) replaces isoleucine 689 with an S-γ-methyl stapled amino acid, and has significantly higher affinity than unsubstituted peptides (390 and 760 nm). Through X-ray crystallography and molecular dynamics studies, we show that the conformation taken up by the S-γ-methyl peptide minimizes the syn-pentane interactions between the α- and γ-methyl groups.


Assuntos
Hidrocarbonetos/química , Peptídeos/química , Receptores de Estrogênio/química , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Metilação , Simulação de Dinâmica Molecular
11.
Proteins ; 81(11): 1900-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23737157

RESUMO

Estrogen receptor alpha (ERα) is a hormone-responsive transcription factor that contains several discrete functional domains, including a ligand-binding domain (LBD) and a DNA-binding domain (DBD). Despite a wealth of knowledge about the behaviors of individual domains, the molecular mechanisms of cross-talk between LBD and DBD during signal transduction from hormone to DNA-binding of ERα remain elusive. Here, we apply a multiscale approach combining coarse-grained (CG) and atomistically detailed simulations to characterize this cross-talk mechanism via an investigation of the ERα conformational landscape. First, a CG model of ERα is built based on crystal structures of individual LBDs and DBDs, with more emphasis on their interdomain interactions. Second, molecular dynamics simulations are implemented and enhanced sampling is achieved via the "push-pull-release" strategy in the search for different LBD-DBD orientations. Third, multiple energetically stable ERα conformations are identified on the landscape. A key finding is that estradiol-bound LBDs utilize the well-described activation helix H12 to pack and stabilize LBD-DBD interactions. Our results suggest that the estradiol-bound LBDs can serve as a scaffold to position and stabilize the DBD-DNA complex, consistent with experimental observations of enhanced DNA binding with the LBD. Final assessment using atomic-level simulations shows that these CG-predicted models are significantly stable within a 15-ns simulation window and that specific pairs of lysine residues in close proximity at the domain interfaces could serve as candidate sites for chemical cross-linking studies. Together, these simulation results provide a molecular view of the role of ERα domain interactions in response to hormone binding.


Assuntos
DNA/metabolismo , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Sítios de Ligação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Breast Cancer Res Treat ; 137(2): 373-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23224145

RESUMO

Metastasis remains a significant challenge in treating cancer. A better understanding of the molecular mechanisms underlying metastasis is needed to develop more effective treatments. Here, we show that human breast tumor biomarker miR-30c regulates invasion by targeting the cytoskeleton network genes encoding twinfilin 1 (TWF1) and vimentin (VIM). Both VIM and TWF1 have been shown to regulate epithelial-to-mesenchymal transition. Similar to TWF1, VIM also regulates F-actin formation, a key component of cellular transition to a more invasive mesenchymal phenotype. To further characterize the role of the TWF1 pathway in breast cancer, we found that IL-11 is an important target of TWF1 that regulates breast cancer cell invasion and STAT3 phosphorylation. The miR-30c-VIM/TWF1 signaling cascade is also associated with clinical outcome in breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Citoesqueleto/genética , MicroRNAs/genética , Proteínas dos Microfilamentos/genética , Proteínas Tirosina Quinases/genética , Vimentina/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Citoesqueleto/patologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-11/genética , Interleucina-11/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Proteínas Tirosina Quinases/metabolismo , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
NPJ Breast Cancer ; 9(1): 96, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036546

RESUMO

The constitutively active ESR1 Y537S mutation is associated with endocrine therapy (ET) resistance and progression of metastatic breast cancer through its effects on estrogen receptor (ERα) gene regulatory functions. However, the complex relationship between ERα and the progesterone receptor (PR), known as ERα/PR crosstalk, has yet to be characterized in the context of the ERα Y537S mutation. Using proximity ligation assays, we identify an increased physical interaction of ERα and PR in the context of the ERα Y537S mutation, including in the nucleus where this interaction may translate to altered gene expression. As such, more than 30 genes were differentially expressed in both patient tumor and cell line data (MCF7 and/or T47D cells) in the context of the ERα Y537S mutation compared to ERα WT. Of these, IRS1 stood out as a gene of interest, and ERα and PR occupancy at chromatin binding sites along IRS1 were uniquely altered in the context of ERα Y537S. Furthermore, siRNA knockdown of IRS1 or treatment with the IRS1 inhibitor NT-157 had a significant anti-proliferative effect in ERα Y537S cell lines, implicating IRS1 as a potential therapeutic target for restoring treatment sensitivity to patients with breast cancers harboring ERα Y537S mutations.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36629008

RESUMO

We describe a new demethylation method for dimethyl phosphonate esters using sodium ethanethiolate. The new procedure allows demethylation of nucleoside dimethyl phosphonate esters without 1'-α-anomerization, providing an improved synthesis of 5'-methylene substituted 2',5'-deoxynucleotides.


Assuntos
Ésteres , Organofosfonatos , Desoxirribonucleotídeos , Desmetilação
15.
ACS Omega ; 8(35): 31941-31945, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692243

RESUMO

We reinvestigated the reported method for the synthesis of ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]-but-2-enoate (MIBE), which was obtained by the reaction of 5-hydroxy-1-methyl-1H-indole with excess ethyl acetoacetate catalyzed by indium(III) chloride. Based on the NMR and MS data, we assigned the structure of the isolated product as (3E)-3-(2-ethoxy-2-oxoethylidene)-1,2,3,4-tetrahydro-7-hydroxy-1,4-dimethylcyclopent[b]indole-1-acetate (2a) rather than the reported MIBE.

16.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546915

RESUMO

Steroid hormone receptors play a crucial role in the development and characterization of the majority of breast cancers. These receptors canonically function through homodimerization, but physical interactions between different hormone receptors play a key role in cell functions as well. The estrogen receptor (ERα) and progesterone receptor (PR), for example, are involved in a complex set of interactions known as ERα/PR crosstalk. Here, we developed a valuable panel of nuclear receptor expression plasmids specifically for use in NanoBRET assays to assess nuclear receptor homo- and heterodimerization. We demonstrate the utility of this assay system by assessing ERα/PR physical interaction in the context of the endocrine therapy resistance-associated ERα Y537S mutation. We identify a role of the ERα Y537S mutation beyond that of constitutive activity of the receptor; it also increases ERα/PR crosstalk. In total, the NanoBRET assay provides a novel avenue for investigating hormone receptor crosstalk. Future research may use this system to assess the effects of other clinically significant hormone receptor mutations on hormone receptor crosstalk.

17.
Nat Biotechnol ; 41(4): 541-551, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36302987

RESUMO

Despite unequivocal roles in disease, transcription factors (TFs) remain largely untapped as pharmacologic targets due to the challenges in targeting protein-protein and protein-DNA interactions. Here we report a chemical strategy to generate modular synthetic transcriptional repressors (STRs) derived from the bHLH domain of MAX. Our synthetic approach yields chemically stabilized tertiary domain mimetics that cooperatively bind the MYC/MAX consensus E-box motif with nanomolar affinity, exhibit specificity that is equivalent to or beyond that of full-length TFs and directly compete with MYC/MAX protein for DNA binding. A lead STR directly inhibits MYC binding in cells, downregulates MYC-dependent expression programs at the proteome level and inhibits MYC-dependent cell proliferation. Co-crystallization and structure determination of a STR:E-box DNA complex confirms retention of DNA recognition in a near identical manner as full-length bHLH TFs. We additionally demonstrate structure-blind design of STRs derived from alternative bHLH-TFs, confirming that STRs can be used to develop highly specific mimetics of TFs targeting other gene regulatory elements.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Fatores de Transcrição , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sequências Hélice-Alça-Hélice , Sequências Reguladoras de Ácido Nucleico , DNA/genética , DNA/metabolismo
18.
Cancers (Basel) ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835373

RESUMO

Estrogen receptor-positive (ER+) invasive lobular breast cancer (ILC) comprises about ~15% of breast cancer. ILC's unique genotypic (loss of wild type E-cadherin expression) and phenotypic (small individual round cancer cells that grow in discontinuous nests) are thought to contribute to a distinctive pattern of metastases to serosal membranes. Unlike invasive ductal carcinoma (IDC), ILC metastases often intercalate into the mesothelial layer of the peritoneum and other serosal surfaces. While ER activity is a known driver of ILC proliferation, very little is known about how additional nuclear receptors contribute to ILC's distinctive biology. In ER+ IDC, we showed previously that glucocorticoid receptor (GR) activity inhibits pro-proliferative gene expression and cell proliferation. Here we examined ER+ ILC models and found that GR activation similarly reduces S-phase entry gene expression and ILC proliferation. While slowing tumor growth rate, our data also suggest that GR activation results in an enhanced metastatic phenotype through increasing integrin-encoding gene expression, extracellular matrix protein adhesion, and mesothelial cell clearance. Moreover, in an intraductal mouse mammary gland model of ILC, we found that GR expression is associated with increased bone metastases despite slowed primary mammary tumor growth. Taken together, our findings suggest GR-mediated gene expression may contribute to the unusual characteristics of ILC biology.

19.
Gynecol Oncol ; 124(1): 134-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21996264

RESUMO

OBJECTIVE: To test if estrogen promotes carcinogenesis in vitro and in a genetic mouse model of ovarian cancer and whether its effects can be inhibited by a novel selective estrogen receptor modulator (SERM), bazedoxifene. METHODS: Bazedoxifene was synthesized and it was confirmed that the drug abrogated the uterine stimulatory effect of 17ß-estradiol in mice. To determine if hormones alter tumorigenesis in vivo LSL-K-ras(G12D/+)Pten(loxP/loxP) mice were treated with vehicle control, 17ß-estradiol or bazedoxifene. Hormone receptor status of a cell line established from LSL-K-ras(G12D/+)Pten(loxP/loxP) mouse ovarian tumors was characterized using Western blotting and immunohistochemistry. The cell line was treated with hormones and invasion assays were performed using Boyden chambers and proliferation was assessed using MTT assays. RESULTS: In vitro 17ß-estradiol increased both the invasion and proliferation of ovarian cancer cells and bazedoxifene reversed these effects. However, in the genetic mouse model neither treatment with 17ß-estradiol nor bazedoxifene changed mean tumor burden when compared to treatment with placebo. The mice in all treatment groups had similar tumor incidence, metastatic nodules and ascites. CONCLUSION: While 17ß-estradiol increases the invasion and proliferation of ovarian cancer cells, these effects do not translate into increased tumor burden in a genetic mouse model of endometrioid ovarian cancer. Likewise, while the SERM reversed the detrimental effects of estrogen in vitro, there was no change in tumor burden in mice treated with bazedoxifene. These findings demonstrate the complex interplay between hormones and ovarian carcinogenesis.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Estradiol/farmacologia , Indóis/farmacologia , Neoplasias Ovarianas/induzido quimicamente , Neoplasias Ovarianas/prevenção & controle , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Interações Medicamentosas , Antagonistas de Estrogênios/farmacologia , Feminino , Predisposição Genética para Doença , Indóis/síntese química , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ovário/efeitos dos fármacos , Ovário/patologia
20.
Cancers (Basel) ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35625985

RESUMO

ET resistance is a critical problem for estrogen receptor-positive (ER+) breast cancer. In this study, we have investigated how alterations in sphingolipids promote cell survival in ET-resistant breast cancer. We have performed LC-MS-based targeted sphingolipidomics of tamoxifen-sensitive and -resistant MCF-7 breast cancer cell lines. Follow-up studies included treatments of cell lines and patient-derived xenograft organoids (PDxO) with small molecule inhibitors; cytometric analyses to measure cell death, proliferation, and apoptosis; siRNA-mediated knockdown; RT-qPCR and Western blot for gene and protein expression; targeted lipid analysis; and lipid addback experiments. We found that tamoxifen-resistant cells have lower levels of ceramides and hexosylceramides compared to their tamoxifen-sensitive counterpart. Upon perturbing the sphingolipid pathway with small molecule inhibitors of key enzymes, we identified that CERK is essential for tamoxifen-resistant breast cancer cell survival, as well as a fulvestrant-resistant PDxO. CERK inhibition induces ceramide-mediated cell death in tamoxifen-resistant cells. Ceramide-1-phosphate (C1P) partially reverses CERK inhibition-induced cell death in tamoxifen-resistant cells, likely through lowering endogenous ceramide levels. Our findings suggest that ET-resistant breast cancer cells maintain lower ceramide levels as an essential pro-survival mechanism. Consequently, ET-resistant breast cancer models have a unique dependence on CERK as its activity can inhibit de novo ceramide production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA