Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Am Chem Soc ; 142(14): 6499-6504, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32156107

RESUMO

The first total synthesis of the resveratrol tetramers vitisin A and vitisin D is reported. Electrochemical generation and selective dimerization of persistent radicals is followed by thermal isomerization of the symmetric C8b-C8c dimer to the C3c-C8b isomer, providing rapid entry into the vitisin core. Computational results suggest that this synthetic approach mimics Nature's strategy for constructing these complex molecules. Sequential acid-mediated rearrangements consistent with the proposed biogenesis of these compounds afford vitisin A and vitisin D. The rapid synthesis of these complex molecules will enable further study of their pharmacological potential.


Assuntos
Benzofuranos/síntese química , Fenóis/síntese química , Humanos , Estrutura Molecular
2.
J Am Chem Soc ; 140(10): 3798-3808, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29451786

RESUMO

Sterically-hindered nitroxides such as 2,2,6,6-tetramethylpiperidin- N-oxyl (TEMPO) have long been ascribed antioxidant activity that is thought to underlie their chemopreventive and anti-aging properties. However, the most commonly invoked reactions in this context-combination with an alkyl radical to give a redox inactive alkoxyamine or catalysis of superoxide dismutation-are unlikely to be relevant under (most) physiological conditions. Herein, we characterize the kinetics and mechanisms of the reactions of TEMPO, as well as an N-arylnitroxide and an N, N-diarylnitroxide, with alkylperoxyl radicals, the propagating species in lipid peroxidation. In each of aqueous solution and lipid bilayers, they are found to be significantly more reactive than Vitamin E, Nature's premier radical-trapping antioxidant (RTA). Inhibited autoxidations of THF in aqueous buffers reveal that nitroxides reduce peroxyl radicals by electron transfer with rate constants ( k ≈ 106 to >107 M-1 s-1) that correlate with the standard potentials of the nitroxides ( E° ≈ 0.75-0.95 V vs NHE) and that this activity is catalytic in nitroxide. Regeneration of the nitroxide occurs by a two-step process involving hydride transfer from the substrate to the nitroxide-derived oxoammonium ion followed by H-atom transfer from the resultant hydroxylamine to a peroxyl radical. This reactivity extends from aqueous solution to phosphatidylcholine liposomes, where added NADPH can be used as a hydride donor to promote nitroxide recycling, as well as to cell culture, where the nitroxides are shown to be potent inhibitors of lipid peroxidation-associated cell death (ferroptosis). These insights have enabled the identification of the most potent nitroxide RTA and anti-ferroptotic agent yet described: phenoxazine- N-oxyl.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Citoproteção/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos/metabolismo , Animais , Antioxidantes/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Óxidos N-Cíclicos/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Bicamadas Lipídicas/metabolismo , Camundongos , Modelos Moleculares , NADP/metabolismo
3.
Angew Chem Int Ed Engl ; 57(29): 9165-9169, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29729079

RESUMO

The formation of networks through light-initiated radical polymerization allows little freedom for tailored network design. The resulting inhomogeneous network architectures and brittle material behavior of such glassy-type networks limit the commercial application of photopolymers in 3D printing, biomedicine, and microelectronics. An ester-activated vinyl sulfonate ester (EVS) is presented for the rapid formation of tailored methacrylate-based networks. The chain transfer step induced by EVS reduces the kinetic chain length of the photopolymer, thus shifting the gel point to higher conversion, which results in reduced shrinkage stress and higher overall conversion. The resulting, more homogeneous network is responsible for the high toughness of the material. The unique property of EVS to promote nearly retardation-free polymerization can be attributed to the fact that after the transfer step no polymerizable double bond is formed, as is usually seen in classical chain transfer agents. Laser flash photolysis, theoretical calculations, and photoreactor studies were used to elucidate the fast chain transfer reaction and exceptional regulating ability of EVS. Final photopolymer networks exhibit improved mechanical performance making EVS an outstanding candidate for the 3D printing of tough photopolymers.

4.
J Am Chem Soc ; 139(18): 6484-6493, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28419803

RESUMO

Hydropersulfides (RSSH) are formed endogenously via the reaction of the gaseous biotransmitter hydrogen sulfide (H2S) and disulfides (RSSR) and/or sulfenic acids (RSOH). RSSH have been investigated for their ability to store H2S in vivo and as a line of defense against oxidative stress, from which it is clear that RSSH are much more reactive to two-electron oxidants than thiols. Herein we describe the results of our investigations into the H-atom transfer chemistry of RSSH, contrasting it with the well-known H-atom transfer chemistry of thiols. In fact, RSSH are excellent H-atom donors to alkyl (k ∼ 5 × 108 M-1 s-1), alkoxyl (k ∼ 1 × 109 M-1 s-1), peroxyl (k ∼ 2 × 106 M-1 s-1), and thiyl (k > 1 × 1010 M-1 s-1) radicals, besting thiols by as little as 1 order and as much as 4 orders of magnitude. The inherently high reactivity of RSSH to H-atom transfer is based largely on thermodynamic factors; the weak RSS-H bond dissociation enthalpy (∼70 kcal/mol) and the associated high stability of the perthiyl radical make the foregoing reactions exothermic by 15-34 kcal/mol. Of particular relevance in the context of oxidative stress is the reactivity of RSSH to peroxyl radicals, where favorable thermodynamics are bolstered by a secondary orbital interaction in the transition state of the formal H-atom transfer that drives the inherent reactivity of RSSH to match that of α-tocopherol (α-TOH), nature's premier radical-trapping antioxidant. Significantly, the reactivity of RSSH eclipses that of α-TOH in H-bond-accepting media because of their low H-bond acidity (α2H ∼ 0.1). This affords RSSH a unique versatility compared to other highly reactive radical-trapping antioxidants (e.g., phenols, diarylamines, hydroxylamines, sulfenic acids), which tend to have high H-bond acidities. Moreover, the perthiyl radicals that result are highly persistent under autoxidation conditions and undergo very rapid dimerization (k = 5 × 109 M-1 s-1) in lieu of reacting with O2 or autoxidizable substrates.

5.
J Org Chem ; 82(7): 3571-3580, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28318253

RESUMO

Formal hydrogen atom abstraction from the nitrogen-hydrogen bonds in purine nucleosides produces reactive intermediates that are important in nucleic acid oxidation. Herein we describe an approach for the independent generation of the purine radical resulting from hydrogen atom abstraction from the N6-amine of 2'-deoxyadenosine (dA•). The method involves sequential Norrish Type I photocleavage of a ketone (7b) and ß-fragmentation of the initially formed alkyl radical (8b) to form dA• and acetone. The formation of dA• was followed by laser flash photolysis, which yields a transient with λmax ≈ 340 nm and a broader weaker absorption centered at ∼560 nm. This transient grows in at ≥2 × 105 s-1; however, computations and reactivity data suggest that ß-fragmentation occurs much faster, implying the consumption of dA• as it is formed. Continuous photolysis of 7b in the presence of ferrous ion or thiophenol produces good yields of dA, whereas less reactive thiols afford lower yields presumably due to a polarity mismatch. This tandem photochemical, ß-fragmentation method promises to be useful for site-specific production of dA• in nucleic acid oligomers and/or polymers and also for the production of aminyl radicals, in general.


Assuntos
Aminas/síntese química , Desoxiadenosinas/síntese química , Aminas/química , Desoxiadenosinas/química , Radicais Livres/síntese química , Radicais Livres/química , Estrutura Molecular , Processos Fotoquímicos
6.
J Org Chem ; 82(19): 10523-10536, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28885854

RESUMO

Diphenylamines are widely used to protect petroleum-derived products from autoxidation. Their efficacy as radical-trapping antioxidants (RTAs) relies on a balance of fast H-atom transfer kinetics and stability to one-electron oxidation by peroxidic species. Both H-atom transfer and one-electron oxidation are enhanced by substitution with electron-donating substituents, such as the S-atom in phenothiazines, another important class of RTA. Herein we report the results of our investigations of the RTA activity of the structurally related, but essentially ignored, phenoxazines. We find that the H-atom transfer reactivity of substituted phenoxazines follows an excellent Evans-Polanyi correlation spanning kinh = 4.5 × 106 M-1 s-1 and N-H BDE = 77.4 kcal mol-1 for 3-CN,7-NO2-phenoxazine to kinh = 6.6 × 108 M-1 s-1 and N-H BDE = 71.8 kcal mol-1 for 3,7-(OMe)2-phenoxazine (37 °C). The reactivity of the latter compound is the greatest of any RTA ever reported and is likely to represent a reaction without an enthalpic barrier since log A for this reaction is likely ∼8.5. The very high reactivity of most of the phenoxazines studied required the determination of their kinetic parameters by inhibited autoxidations in the presence of a very strong H-bonding cosolvent (DMSO), which slowed the observed rates by up to 2 orders of magnitude by dynamically reducing the equilibrium concentration of (free) phenoxazine as an H-atom donor. Despite their remarkably high reactivity toward peroxyl radicals, the phenoxazines were found to be comparatively stable to one-electron oxidation relative to diphenylamines and phenothiazines (E° ranging from 0.59 to 1.38 V vs NHE). Thus, phenoxazines with comparable oxidative stability to commonly used diphenylamine and phenothiazine RTAs had significantly greater reactivity (by up to 2 orders of magnitude). Computations suggest that this remarkable balance in H-atom transfer kinetics and stability to one-electron oxidation results from the ability of the bridging oxygen atom in phenoxazine to serve as both a π-electron donor to stabilize the aminyl radical and σ-electron acceptor to destabilize the aminyl radical cation. Perhaps most excitingly, phenoxazines have "non-classical" RTA activity, where they trap >2 peroxyl radicals each, at ambient temperatures.

7.
Proc Natl Acad Sci U S A ; 108(17): 6945-50, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21482803

RESUMO

The prostaglandin and leukotriene families of lipid mediators are formed via two distinct biosynthetic pathways that are initiated by the oxygenation of arachidonic acid by either cyclooxygenase-2 (COX-2) or 5-lipoxygenase (5-LOX), respectively. The 5-LOX product 5S-hydroxyeicosatetraenoic acid, however, can also serve as an efficient substrate for COX-2, forming a bicyclic diendoperoxide with structural similarities to the arachidonic acid-derived prostaglandin endoperoxide PGH(2) [Schneider C, et al. (2006) J Am Chem Soc 128:720-721]. Here we identify two cyclic hemiketal (HK) eicosanoids, HKD(2) and HKE(2), as the major nonenzymatic rearrangement products of the diendoperoxide using liquid chromatography-mass spectrometry analyses as well as UV and NMR spectroscopy. HKD(2) and HKE(2) are furoketals formed by spontaneous cyclization of their respective 8,9-dioxo-5S,11R,12S,15S-tetrahydroxy- or 11,12-dioxo-5S,8S,9S,15S-tetrahydroxy-eicosadi-6E,13E-enoic acid precursors, resulting from opening of the 9S,11R- and 8S,12S-peroxide rings of the diendoperoxide. Furthermore, the diendoperoxide is an efficient substrate for the hematopoietic type of prostaglandin D synthase resulting in formation of HKD(2), equivalent to the enzymatic transformation of PGH(2) to PGD(2). HKD(2) and HKE(2) were formed in human blood leukocytes activated with bacterial lipopolysaccharide and calcium ionophore A23187, and biosynthesis was blocked by inhibitors of 5-LOX or COX-2. HKD(2) and HKE(2) stimulated migration and tubulogenesis of microvascular endothelial cells, implicating a proangiogenic role of the hemiketals in inflammatory sites that involve expression of 5-LOX and COX-2. Identification of the highly oxygenated hemiketal eicosanoids provides evidence for a previously unrecognized biosynthetic cross-over of the 5-LOX and COX-2 pathways.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Eicosanoides/biossíntese , Leucócitos/enzimologia , Araquidonato 5-Lipoxigenase/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Ciclo-Oxigenase 2/genética , Eicosanoides/genética , Humanos , Leucócitos/citologia , Lipopolissacarídeos/farmacologia
8.
J Am Chem Soc ; 135(46): 17314-21, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24127820

RESUMO

Acylgermanes have been shown to act as efficient photoinitiators. In this investigation we show how dibenzoyldiethylgermane 1 reacts upon photoexcitation. Our real-time investigation utilizes femto- and nanosecond transient absorption, time-resolved EPR (50 ns), photo-chemically induced dynamic nuclear polarization, DFT calculations, and GC-MS analysis. The benzoyldiethylgermyl radical G• is formed via the triplet state of parent 1. On the nanosecond time scale this radical can recombine or undergo hydrogen-transfer reactions. Radical G• reacts with butyl acrylate at a rate of 1.2 ± 0.1 × 10(8) and 3.2 ± 0.2 × 10(8) M(-1) s(-1), in toluene and acetonitrile, respectively. This is ~1 order of magnitude faster than related phosphorus-based radicals. The initial germyl and benzoyl radicals undergo follow-up reactions leading to oligomers comprising Ge-O bonds. LC-NMR analysis of photocured mixtures containing 1 and the sterically hindered acrylate 3,3-dimethyl-2-methylenebutanoate reveals that the products formed in the course of a polymerization are consistent with the intermediates established at short time scales.


Assuntos
Germânio/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Radicais Livres/química , Estrutura Molecular , Fotólise
9.
J Org Chem ; 78(5): 1760-7, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22780905

RESUMO

Symmetrically and unsymmetrically electron-donor-substituted octacyano[4]dendralenes were synthesized and their opto-electronic properties investigated by UV/vis spectroscopy, electrochemical measurements (cyclic voltammetry (CV) and rotating disk voltammetry (RDV)), and electron paramagnetic resonance (EPR) spectroscopy. These nonplanar push-pull chromophores are potent electron acceptors, featuring potentials for first reversible electron uptake around at -0.1 V (vs Fc(+)/Fc, in CH2Cl2 + 0.1 M n-Bu4NPF6) and, in one case, a remarkably small HOMO-LUMO gap (ΔE = 0.68 V). EPR measurements gave well-resolved spectra after one-electron reduction of the octacyano[4]dendralenes, whereas the one-electron oxidized species could not be detected in all cases. Investigations of the radical anions of related donor-substituted 1,1,4,4-tetracyanobuta-1,3-diene derivatives revealed electron localization at one 1,1-dicyanovinyl (DCV) moiety, in contrast to predictions by density functional theory (DFT) calculations. The particular factors leading to the charge distribution in the electron-accepting domains of the tetracyano and octacyano chromophores are discussed.

10.
J Biol Chem ; 286(2): 1114-24, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21071447

RESUMO

The efficacy of the diphenol curcumin as a cancer chemopreventive agent is limited by its chemical and metabolic instability. Non-enzymatic degradation has been described to yield vanillin, ferulic acid, and feruloylmethane through cleavage of the heptadienone chain connecting the phenolic rings. Here we provide evidence for an alternative mechanism, resulting in autoxidative cyclization of the heptadienone moiety as a major pathway of degradation. Autoxidative transformation of curcumin was pH-dependent with the highest rate at pH 8 (2.2 µM/min) and associated with stoichiometric uptake of O(2). Oxidation was also catalyzed by recombinant cyclooxygenase-2 (COX-2) (50 nm; 7.5 µM/min), and the rate was increased ≈10-fold by the addition of 300 µM H(2)O(2). The COX-2 catalyzed transformation was inhibited by acetaminophen but not indomethacin, suggesting catalysis occurred by the peroxidase activity. We propose a mechanism of enzymatic or autoxidative hydrogen abstraction from a phenolic hydroxyl to give a quinone methide and a delocalized radical in the heptadienone chain that undergoes 5-exo cyclization and oxygenation. Hydration of the quinone methide (measured by the incorporation of O-18 from H(2)(18)O) and rearrangement under loss of water gives the final dioxygenated bicyclopentadione product. When curcumin was added to RAW264.7 cells, the bicyclopentadione was increased 1.8-fold in cells activated by LPS; vanillin and other putative cleavage products were negligible. Oxidation to a reactive quinone methide is the mechanistic basis of many phenolic anti-cancer drugs. It is possible, therefore, that oxidative transformation of curcumin, a prominent but previously unrecognized reaction, contributes to its cancer chemopreventive activity.


Assuntos
Antineoplásicos/farmacocinética , Transformação Celular Neoplásica/metabolismo , Curcumina/farmacocinética , Ciclo-Oxigenase 2/metabolismo , Neoplasias/prevenção & controle , Animais , Soluções Tampão , Células Cultivadas , Humanos , Macrófagos/citologia , Camundongos , Neoplasias/metabolismo , Oxirredução/efeitos dos fármacos , Oxigênio/metabolismo , Lactogênio Placentário , Transdução de Sinais/efeitos dos fármacos , Spodoptera
11.
Chemistry ; 17(36): 10089-96, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21793062

RESUMO

A thorough mechanistic study has been performed on the reaction between benzophenone (BZP) and a series of 1,4-dienes, including 1,4-cyclohexadiene (CHD), 1,4-dihydro-2-methylbenzoic acid (MBA), 1,4-dihydro-1,2-dimethylbenzoic acid (DMBA) and linoleic acid (LA). A combination of steady-state photolysis, laser flash photolysis (LFP), and photochemically induced dynamic nuclear polarization (photo-CIDNP) have been used. Irradiation of BZP and CHD led to a cross-coupled sensitizer-diene product, together with 6, 7, and 8. With MBA and DMBA as hydrogen donors, photoproducts arising from cross-coupling of sensitizer and diene radicals were found; compound 7 was also obtained, but 6 and o-toluic acid were only isolated in the irradiation of BZP with MBA. Triplet lifetimes were determined in the absence and in the presence of several diene concentrations. All three model compounds showed similar reactivity (k(q) ≈10(8) M(-1) s(-1)) towards triplet excited BZP. Partly reversible hydrogen abstraction of the allylic hydrogen atoms of CHD, MBA, and DMBA was also detected by photo-CIDNP on different timescales. Polarizations of the diamagnetic products were in full agreement with the results derived from LFP. Finally, LA also underwent partly reversible hydrogen abstraction during photoreaction with BZP. Subsequent hydrogen transfer between primary radicals led to conjugated derivatives of LA. The unpaired electron spin population in linoleyl radical (LA(.)) was predominantly found on H(1-5) protons. To date, LA-related radicals were only reported upon hydrogen transfer from highly substituted model compounds by steady-state EPR spectroscopy. Herein, we have experimentally established the formation of LA(.) and shown that it converts into two dominating conjugated isomers on the millisecond timescale. Such processes are at the basis of alterations of membrane structures caused by oxidative stress.


Assuntos
Benzofenonas/química , Ácido Linoleico/química , Peroxidação de Lipídeos , Luz , Estresse Oxidativo , Fotólise
12.
J Org Chem ; 76(14): 5628-35, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21604695

RESUMO

Despite the predominant electron donor character of p-phenylenediamine, our studies on extended p-phenylenediamine derivatives show that they can not only be chemically oxidized, giving well-known Wurster-type radical cations, but also be chemically reduced, giving radical anions. Making use of EPR/ENDOR spectroscopy and supported by DFT calculations, we were able to reveal the extent of π-electron delocalization in the paramagnetic species and to shed light onto the geometry and bond lengths. While for the radical anions spin was found to be mostly delocalized into the π-system, the radical cations can be described as essentially N-centered. Furthermore, we performed electrochemical characterizations using cyclic voltammetry to gain insight into the thermodynamics of the redox processes. The photophysical properties of the parent extended p-phenylenediamine were investigated by absorption, emission, and excitation spectroscopy. The fluorescence quantum yield and the excited-state lifetime of the neutral precursors in hexane and acetonitrile were determined to establish elementary differences originating from solvent effects.

13.
J Lipid Res ; 51(3): 575-85, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19752399

RESUMO

Biosynthesis of the prostaglandin endoperoxide by the cyclooxygenase (COX) enzymes is accompanied by formation of a small amount of 11R-hydroxyeicosatetraenoic acid (HETE), 15R-HETE, and 15S-HETE as by-products. Acetylation of COX-2 by aspirin abrogates prostaglandin synthesis and triggers formation of 15R-HETE as the sole product of oxygenation of arachidonic acid. Here, we investigated the formation of by-products of the transformation of 5S-HETE by native COX-2 and by aspirin-acetylated COX-2 using HPLC-ultraviolet, GC-MS, and LC-MS analysis. 5S,15S- dihydroxy (di)HETE, 5S,15R-diHETE, and 5S,11R-diHETE were identified as by-products of native COX-2, in addition to the previously described di-endoperoxide (5S,15S-dihydroxy-9S,11R,8S,12S-diperoxy-6E,13E-eicosadienoic acid) as the major oxygenation product. 5S,15R-diHETE was the only product formed by aspirin-acetylated COX-2. Both 5,15-diHETE and 5,11-diHETE were detected in CT26 mouse colon carcinoma cells as well as in lipopolysaccharide-activated RAW264.7 cells incubated with 5S-HETE, and their formation was attenuated in the presence of the COX-2 specific inhibitor, NS-398. Aspirin-treated CT26 cells gave 5,15-diHETE as the most prominent product formed from 5S-HETE. 5S,15S-diHETE has been described as a product of the cross-over of 5-lipoxygenase (5-LOX) and 15-LOX activities in elicited rat mononuclear cells and human leukocytes, and our studies implicate cross-over of the 5-LOX and COX-2 pathways as an additional biosynthetic route.


Assuntos
Aspirina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Oxigênio/metabolismo , Acetilação/efeitos dos fármacos , Animais , Aspirina/química , Linhagem Celular , Dicroísmo Circular , Ciclo-Oxigenase 2/química , Humanos , Ácidos Hidroxieicosatetraenoicos/análise , Ácidos Hidroxieicosatetraenoicos/biossíntese , Camundongos , Estereoisomerismo
14.
J Phys Chem A ; 114(23): 6487-92, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20481598

RESUMO

Solution EPR and ENDOR studies on the radical cations of three dimeric p-phenylene diamine (PD)-based compounds, the tetraisopropyl-substituted bis-trimethylene-bridged [5,5]paracyclophane 1(iPr)(+) and its tetramethyl- and tetraisopropyl-substituted bis-pentamethylene-bridged [7,7]paracyclophane analogues 3(Me)(+) and 3(iPr)(+), showed that charge is localized on one PD(+) unit on the EPR time scale in all three compounds and determined the nitrogen splitting constants and several of the hydrogen splitting constants for these complex spectra. Rigid glass studies of the diradical dications of 1(iPr)(2+), 3(iPr)(2+), and its tetramethylene-bridged [6,6]paracyclophane analogue 2(iPr)(2+), all of which show significant amounts of thermally excited triplet at low temperature, demonstrated that 1(iPr)(2+) has a singlet ground state but the triplet lies only 0.07 kcal/mol higher in energy, and 3(iPr)(2+) has its triplet lying 0.05 kcal/mol higher in energy than its singlet.

15.
J Lipid Res ; 50(12): 2455-62, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19553698

RESUMO

Oxygenation of the 5-lipoxygenase product 5S-hydroxyeicosatetraenoic acid by cyclooxygenase-2 yields a bicyclic di-endoperoxide. The di-endoperoxide contains two peroxides spanning from carbons 9 to 11 and 8 to 12, and two hydroxyls at carbons 5 and 15 of arachidonic acid (Schneider C., et al. 2006. Convergent oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2. J. Am. Chem. Soc. 128: 720). Here, we report that treatment of the di-endoperoxide with hematin or ferrous chloride results in cleavage of both peroxide O-O bonds and of the bonds between the carbons that carry the peroxide groups, producing the aldehydes 4-hydroxy-2E-nonenal (4-HNE), 8-oxo-5S-hydroxy-6E-octenoic acid, and malondialdehyde (MDA). The hematin- and ferrous iron-catalyzed transformation of the di-endoperoxide proceeded with a similar yield of products as the cleavage of the prostaglandin endoperoxide PGH(2) to 12S-hydroxy-5Z,8E,10E-heptadecatrienoic acid and MDA. Chiral phase HPLC analysis of the 4-HNE cleavage product showed greater than 98% 4S and thus established the S configuration of the 15-carbon of the di-endoperoxide that had not previously been assigned. This transformation of the 5-lipoxygenase/cyclooxygenase-2 derived di-endoperoxide invokes the possibility of a novel pathway to formation of the classic lipid peroxidation products 4-HNE and MDA.


Assuntos
Aldeídos/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Biocatálise , Ciclo-Oxigenase 2/metabolismo , Heme/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Malondialdeído/metabolismo , Peróxidos/metabolismo , Aldeídos/química , Araquidonato 5-Lipoxigenase/química , Ciclo-Oxigenase 2/química , Compostos Ferrosos/metabolismo , Hemina/metabolismo , Malondialdeído/química , Estereoisomerismo
16.
Chem Sci ; 10(19): 4999-5010, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31183049

RESUMO

Olefin sulfurization, wherein alkenes and sulfur are heated together at high temperatures, produces branched polysulfides. Due to their anti-wear properties, they are indispensible additives to lubricants, but are also added to other petroleum-derived products as oxidation inhibitors. Polysulfides also figure prominently in the chemistry and biology of garlic and other plants of the Allium species. We previously reported that trisulfides, upon oxidation to their corresponding 1-oxides, are surprisingly effective radical-trapping antioxidants (RTAs) at ambient temperatures. Herein, we show that the homolytic substitution mechanism responsible also operates for tetrasulfides, but not trisulfides, disulfides or sulfides. Moreover, we show that this reactivity persists at elevated temperature (160 °C), enabling tetrasulfides to not only eclipse their 1-oxides as RTAs, but also hindered phenols and alkylated diphenylamines - the most common industrial antioxidant additives. The reactivity is unique to higher polysulfides (n ≥ 4), since homolytic substitution upon them at S2 yields stabilized perthiyl radicals. The persistence of perthiyl radicals also underlies the greater reactivity of polysulfides at elevated temperatures relative to their 1-oxides, since homolytic S-S bond cleavage is reversible in the former, but not in the latter. These results suggest that olefin sulfurization processes optimized for tetrasulfide production will afford materials that impart significantly better oxidation stability to hydrocarbon-based products to which polysulfides are added. Moreover, it suggests that RTA activity may contribute to the biological activity of plant-derived polysulfides.

17.
J Exp Bot ; 59(10): 2611-25, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18487633

RESUMO

In an effort to characterize fruit ripening-related genes functionally, two glucosyltransferases, FaGT6 and FaGT7, were cloned from a strawberry (Fragaria x ananassa) cDNA library and the full-length open reading frames were amplified by rapid amplification of cDNA ends. FaGT6 and FaGT7 were expressed heterologously as fusion proteins in Escherichia coli and target protein was purified using affinity chromatography. Both recombinant enzymes exhibited a broad substrate tolerance in vitro, accepting numerous flavonoids, hydroxycoumarins, and naphthols. FaGT6 formed 3-O-glucosides and minor amounts of 7-O-, 4'-O-, and 3'-O-monoglucosides and one diglucoside from flavonols such as quercetin. FaGT7 converted quercetin to the 3-O-glucoside and 4'-O-glucoside and minor levels of the 7- and 3'-isomers but formed no diglucoside. Gene expression studies showed that both genes are strongly expressed in achenes of small-sized green fruits, while the expression levels were generally lower in the receptacle. Significant levels of quercetin 3-O-, 7-O-, and 4'-O-glucosides, kaempferol 3-O- and 7-O-glucosides, as well as isorhamnetin 7-O-glucoside, were identified in achenes and the receptacle. In the receptacle, the expression of both genes is negatively controlled by auxin which correlates with the ripening-related gene expression in this tissue. Salicylic acid, a known signal molecule in plant defence, induces the expression of both genes. Thus, it appears that FaGT6 and FaGT7 are involved in the glucosylation of flavonols and may also participate in xenobiotic metabolism. The latter function is supported by the proven ability of strawberries to glucosylate selected unnatural substrates injected in ripe fruits. This report presents the first biochemical characterization of enzymes mainly expressed in strawberry achenes and provides the foundation of flavonoid metabolism in the seeds.


Assuntos
Flavonoides/metabolismo , Fragaria/enzimologia , Frutas/enzimologia , Glucosiltransferases/química , Proteínas de Plantas/química , Caules de Planta/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , Flavonoides/química , Fragaria/química , Fragaria/genética , Frutas/química , Frutas/genética , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/genética , Plantas/classificação , Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Xenobióticos/metabolismo
18.
J Phys Chem A ; 112(43): 10931-8, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18837494

RESUMO

In this paper, quantum chemical calculations for various cyano derivatives of thiophene and terthiophenes at the density functional theory (DFT) and ab initio Møller-Plesset (MP2) levels of theory are presented. In the case of the studied terthiophenes, CN groups located in the central part of the molecule lead to a preference of cis-cis geometry over trans-trans conformation. For alpha-substituted dicyano terthiophene, the investigation of torsional dependences shows that the highest energy barrier occurs at the perpendicular orientation of the aromatic rings. On the other hand, the dicyano substitution in the central part of terthiophene molecule exhibits the lowest energy barrier. Excitation energies were calculated using time-dependent density functional theory (TD-DFT). The obtained theoretical results show that the CN groups in alpha and beta positions have a distinct effect on the excitation energies and corresponding oscillator strengths. A CN group located in the alpha position causes a larger bathochromic shift than a CN group in the beta position. Besides, a CN group in the beta position has negligible influence on the position of the first absorption maximum.


Assuntos
Simulação por Computador , Cianetos/química , Modelos Químicos , Tiofenos/química , Elétrons , Estrutura Molecular , Fotoquímica , Estereoisomerismo
19.
Chem Sci ; 9(36): 7218-7229, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30288241

RESUMO

Sulfinic acids (RSO2H) have a reputation for being difficult reagents due to their facile autoxidation. Nevertheless, they have recently been employed as key reagents in a variety of useful radical chain reactions. To account for this paradox and enable further development of radical reactions employing sulfinic acids, we have characterized the thermodynamics and kinetics of their H-atom transfer reactions for the first time. The O-H bond dissociation enthalpy (BDE) of sulfinic acids was determined by radical equilibration to be ∼78 kcal mol-1; roughly halfway between the RS-H BDE in thiols (∼87 kcal mol-1) and RSO-H BDE in sulfenic acids (∼70 kcal mol-1). Regardless, RSH, RSOH and RSO2H have relatively similar inherent H-atom transfer reactivity to alkyl radicals (∼106 M-1 s-1). Counter-intuitively, the trend in rate constants with more reactive alkoxyl radicals follows the reaction energetics: ∼108 M-1 s-1 for RSO2H, midway between thiols (∼107 M-1 s-1) and sulfenic acids (∼109 M-1 s-1). Importantly, since sulfinic and sulfenic acids are very strong H-bond donors (αH2 ∼ 0.63 and 0.55, respectively), their reactivity is greatly attenuated in H-bond accepting solvents, whereas the reactivity of thiols is largely solvent-independent. Efforts to measure rate constants for the reactions of sulfinic acids with alkylperoxyl radicals were unsuccessful. Computations predict these reactions to be surprisingly slow; ∼1000-times slower than for thiols and ∼10 000 000-times slower than for sulfenic acids. On the other hand, the reaction of sulfinic acids with sulfonylperoxyl radicals - which propagate sulfinic acid autoxidation - is predicted to be almost diffusion-controlled. In fact, the rate-determining step in sulfinic acid autoxidation, and the reason they can be used for productive chemistry, is the relatively slow reaction of propagating sulfonyl radicals with O2 (∼106 M-1 s-1).

20.
Chem Sci ; 9(28): 6068-6079, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30079220

RESUMO

Nitroxides are putative intermediates in the accepted reaction mechanisms of the diarylamine and hindered amine antioxidants that are universally added to preserve synthetic and natural hydrocarbon-based materials. New methodology which enables monitoring of hydrocarbon autoxidations at low rates of radical generation has revealed that diarylnitroxides and hindered nitroxides are far better inhibitors of unsaturated hydrocarbon autoxidation than their precursor amines, implying intervention of a different mechanism. Experimental and computational investigations suggest that the nitroxides catalyze the cross-dismutation of hydroperoxyl and alkylperoxyl radicals to yield O2 and a hydroperoxide, thereby halting the autoxidation chain reaction. The hydroperoxyl radicals - key players in hydrocarbon combustion, but essentially unknown in autoxidation - are proposed to derive from a tunneling-enhanced intramolecular (1,4-) hydrogen-atom transfer/elimination sequence from oxygenated radical addition intermediates. These insights suggest that nitroxides are preferred additives for the protection of hydrocarbon-based materials from autoxidation since they exhibit catalytic activity under conditions where their precursor amines are less effective and/or inefficiently converted to nitroxides in situ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA