Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Circ Res ; 128(4): 474-491, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33353368

RESUMO

RATIONALE: Vascular smooth muscle cell (VSMC) senescence promotes atherosclerosis and features of plaque instability, in part, through lipid-mediated oxidative DNA damage and telomere dysfunction. SIRT6 (Sirtuin 6) is a nuclear deacetylase involved in DNA damage response signaling, inflammation, and metabolism; however, its role in regulating VSMC senescence and atherosclerosis is unclear. OBJECTIVE: We examined SIRT6 expression in human VSMCs, the role, regulation, and downstream pathways activated by SIRT6, and how VSMC SIRT6 regulates atherogenesis. METHODS AND RESULTS: SIRT6 protein, but not mRNA, expression was markedly reduced in VSMCs in human and mouse atherosclerotic plaques, and in human VSMCs derived from plaques or undergoing replicative or palmitate-induced senescence versus healthy aortic VSMCs. The ubiquitin ligase CHIP (C terminus of HSC70-interacting protein) promoted SIRT6 stability, but CHIP expression was reduced in human and mouse plaque VSMCs and by palmitate in a p38- and c-Jun N-terminal kinase-dependent manner. SIRT6 bound to telomeres, while SIRT6 inhibition using shRNA or a deacetylase-inactive mutant (SIRT6H133Y) shortened human VSMC lifespan and induced senescence, associated with telomeric H3K9 (histone H3 lysine 9) hyperacetylation and 53BP1 (p53 binding protein 1) binding, indicative of telomere damage. In contrast, SIRT6 overexpression preserved telomere integrity, delayed cellular senescence, and reduced inflammatory cytokine expression and changes in VSMC metabolism associated with senescence. SIRT6, but not SIRT6H133Y, promoted proliferation and lifespan of mouse VSMCs, and prevented senescence-associated metabolic changes. ApoE-/- (apolipoprotein E) mice were generated that overexpress SIRT6 or SIRT6H133Y in VSMCs only. SM22α-hSIRT6/ApoE-/- mice had reduced atherosclerosis, markers of senescence and inflammation compared with littermate controls, while plaques of SM22α-hSIRT6H133Y/ApoE-/- mice showed increased features of plaque instability. CONCLUSIONS: SIRT6 protein expression is reduced in human and mouse plaque VSMCs and is positively regulated by CHIP. SIRT6 regulates telomere maintenance and VSMC lifespan and inhibits atherogenesis, all dependent on its deacetylase activity. Our data show that endogenous SIRT6 deacetylase is an important and unrecognized inhibitor of VSMC senescence and atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Senescência Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Sirtuínas/metabolismo , Animais , Aorta/citologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Células Cultivadas , Citocinas/metabolismo , Histonas/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Sirtuínas/genética , Homeostase do Telômero , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Circ Res ; 116(3): 468-79, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25634970

RESUMO

Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. Growing evidence reveals that basal autophagy is an essential in vivo process mediating proper vascular function. Moreover, autophagy is stimulated by many stress-related stimuli in the arterial wall to protect endothelial cells and smooth muscle cells against cell death and the initiation of vascular disease, in particular atherosclerosis. Basal autophagy is atheroprotective during early atherosclerosis but becomes dysfunctional in advanced atherosclerotic plaques. Little is known about autophagy in other vascular disorders, such as aneurysm formation, arterial aging, vascular stiffness, and chronic venous disease, even though autophagy is often impaired. This finding highlights the need for pharmacological interventions with compounds that stimulate the prosurvival effects of autophagy in the vasculature. A large number of animal studies and clinical trials have indicated that oral or stent-based delivery of the autophagy inducer rapamycin or derivatives thereof, collectively known as rapalogs, effectively inhibit the basic mechanisms that control growth and destabilization of atherosclerotic plaques. Other autophagy-inducing drugs, such as spermidine or add-on therapy with widely used antiatherogenic compounds, including statins and metformin, are potentially useful to prevent vascular disease with minimal adverse effects.


Assuntos
Autofagia , Doenças Vasculares/metabolismo , Animais , Endotélio Vascular/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Doenças Vasculares/patologia
3.
Eur Heart J Open ; 4(1): oead129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38174347

RESUMO

Aims: Microvascular dysfunction has been proposed to drive heart failure with preserved ejection fraction (HFpEF), but the initiating molecular and cellular events are largely unknown. Our objective was to determine when microvascular alterations in HFpEF begin, how they contribute to disease progression, and how pericyte dysfunction plays a role herein. Methods and results: Microvascular dysfunction, characterized by inflammatory activation, loss of junctional barrier function, and altered pericyte-endothelial crosstalk, was assessed with respect to the development of cardiac dysfunction, in the Zucker fatty and spontaneously hypertensive (ZSF1) obese rat model of HFpEF at three time points: 6, 14, and 21 weeks of age. Pericyte loss was the earliest and strongest microvascular change, occurring before prominent echocardiographic signs of diastolic dysfunction were present. Pericytes were shown to be less proliferative and had a disrupted morphology at 14 weeks in the obese ZSF1 animals, who also exhibited an increased capillary luminal diameter and disrupted endothelial junctions. Microvascular dysfunction was also studied in a mouse model of chronic reduction in capillary pericyte coverage (PDGF-Bret/ret), which spontaneously developed many aspects of diastolic dysfunction. Pericytes exposed to oxidative stress in vitro showed downregulation of cell cycle-associated pathways and induced a pro-inflammatory state in endothelial cells upon co-culture. Conclusion: We propose pericytes are important for maintaining endothelial cell function, where loss of pericytes enhances the reactivity of endothelial cells to inflammatory signals and promotes microvascular dysfunction, thereby accelerating the development of HFpEF.

4.
Nat Rev Cardiol ; 19(10): 668-683, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35354967

RESUMO

Sirtuins are NAD+-dependent deacetylase and deacylase enzymes that control important cellular processes, including DNA damage repair, cellular metabolism, mitochondrial function and inflammation. Consequently, mammalian sirtuins are regarded as crucial regulators of cellular function and organism healthspan. Sirtuin activity and NAD+ levels decrease with age in many tissues, and reduced sirtuin expression is associated with several cardiovascular diseases. By contrast, increased sirtuin expression and activity slows disease progression and improves cardiovascular function in preclinical models and delays various features of cellular ageing. The potential cardiometabolic benefits of sirtuins have resulted in clinical trials with sirtuin-modulating agents; although expectations are high, these drugs have not yet been proven to improve healthspan. In this Review, we examine the role of sirtuins in atherosclerosis, summarize advances in the development of compounds that activate or inhibit sirtuin activity and critically evaluate the therapeutic potential of these agents.


Assuntos
Aterosclerose , Sirtuínas , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Senescência Celular , Humanos , Mamíferos/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Sirtuínas/metabolismo
5.
Cardiovasc Res ; 117(11): 2326-2339, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-33576407

RESUMO

Vascular smooth muscle cells (VSMCs) are key participants in both early and late-stage atherosclerosis. VSMCs invade the early atherosclerotic lesion from the media, expanding lesions, but also forming a protective fibrous cap rich in extracellular matrix to cover the 'necrotic' core. Hence, VSMCs have been viewed as plaque-stabilizing, and decreased VSMC plaque content-often measured by expression of contractile markers-associated with increased plaque vulnerability. However, the emergence of lineage-tracing and transcriptomic studies has demonstrated that VSMCs comprise a much larger proportion of atherosclerotic plaques than originally thought, demonstrate multiple different phenotypes in vivo, and have roles that might be detrimental. VSMCs down-regulate contractile markers during atherosclerosis whilst adopting alternative phenotypes, including macrophage-like, foam cell-like, osteochondrogenic-like, myofibroblast-like, and mesenchymal stem cell-like. VSMC phenotypic switching can be studied in tissue culture, but also now in the media, fibrous cap and deep-core region, and markedly affects plaque formation and markers of stability. In this review, we describe the different VSMC plaque phenotypes and their presumed cellular and paracrine functions, the regulatory mechanisms that control VSMC plasticity, and their impact on atherogenesis and plaque stability.


Assuntos
Aterosclerose/patologia , Plasticidade Celular , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica , Animais , Artérias/metabolismo , Artérias/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Linhagem da Célula , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Ruptura Espontânea , Transdução de Sinais
6.
Atherosclerosis ; 322: 51-60, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33706083

RESUMO

BACKGROUND AND AIMS: Targeting macrophage death is a promising strategy for stabilizing atherosclerotic plaques. Recently, necroptosis was identified as a form of regulated necrosis in atherosclerosis. Receptor-interacting serine/threonine-protein kinase (RIPK)1 is an upstream regulator of RIPK3, which is a crucial kinase for necroptosis induction. We aimed to investigate the impact of myeloid-specific RIPK1 gene deletion on atherogenesis. METHODS: RIPK1F/FLysM-Cre+ApoE-/- and RIPK1+/+LysM-Cre+ApoE-/- mice were fed a western-type diet (WD) for 16 or 24 weeks to induce plaque formation. RESULTS: After 16 weeks WD, plaque area and percentage necrosis in RIPK1F/FLysM-Cre+ApoE-/- mice were significantly decreased as compared to plaques of RIPK1+/+LysM-Cre+ApoE-/- mice. Moreover, plaques of RIPK1F/FLysM-Cre+ApoE-/- mice showed more apoptosis and a decreased macrophage content. After 24 weeks WD, plaque size and percentage necrosis were no longer different between the two groups. Free apoptotic cells strongly accumulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In addition to apoptosis, necroptosis was upregulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In vitro, TNF-α triggered apoptosis in RIPK1F/FLysM-Cre+ApoE-/-, but not in RIPK1+/+LysM-Cre+ApoE-/- macrophages. Moreover, RIPK1F/FLysM-Cre+ApoE-/- macrophages were not protected against RIPK3-dependent necroptosis. CONCLUSIONS: The impact of myeloid RIPK1 gene deletion depends on the stage of atherogenesis. At 16 weeks WD, myeloid RIPK1 gene deletion resulted in increased apoptosis, thereby slowing down plaque progression. However, despite decreased macrophage content, plaque and necrotic core size were no longer reduced after 24 weeks of WD, most likely due to the accumulation of free apoptotic and necroptotic cells.


Assuntos
Aterosclerose , Deleção de Genes , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Apoptose , Aterosclerose/genética , Camundongos , Camundongos Knockout para ApoE , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
7.
Commun Biol ; 4(1): 611, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021256

RESUMO

Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease.


Assuntos
Aterosclerose/patologia , Senescência Celular , Inflamação/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/patologia , Telômero/patologia , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Proliferação de Células , Células Cultivadas , Dano ao DNA , Modelos Animais de Doenças , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Neointima/etiologia , Neointima/metabolismo , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
8.
Oxid Med Cell Longev ; 2018: 7687083, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682164

RESUMO

Autophagy is a subcellular process that plays an important role in the degradation of proteins and damaged organelles such as mitochondria (a process termed "mitophagy") via lysosomes. It is crucial for regulating protein and mitochondrial quality control and maintaining cellular homeostasis, whereas dysregulation of autophagy has been implicated in a wide range of diseases including atherosclerosis. Recent evidence has shown that the autophagic process becomes dysfunctional during the progression of atherosclerosis, regardless of whether there are many autophagy-stimulating factors (e.g., reactive oxygen species, oxidized lipids, and cytokines) present within the atherosclerotic plaque. This review highlights the recent insights into the causes and consequences of defective autophagy in atherosclerosis, with a special focus on the role of autophagy and mitophagy in plaque macrophages, vascular smooth muscle cells (VSMCs), and endothelial cells (ECs). It has been shown that defective autophagy can promote apoptosis in macrophages but that it accelerates premature senescence in VSMCs. In the ECs, defective autophagy promotes both apoptosis and senescence. We will discuss the discrepancy between these three cell types in their response to autophagy deficiency and underline the cell type-dependent role of autophagy, which may have important implications for the efficacy of autophagy-targeted treatments for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Autofagia/fisiologia , Mitofagia/fisiologia , Animais , Apoptose/fisiologia , Senescência Celular/fisiologia , Humanos
9.
Cardiovasc Res ; 114(4): 622-634, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360955

RESUMO

In the present review, we describe the causes and consequences of loss of vascular smooth muscle cells (VSMCs) or their function in advanced atherosclerotic plaques and discuss possible mechanisms such as cell death or senescence, and induction of autophagy to promote cell survival. We also highlight the potential use of pharmacological modulators of these processes to limit plaque progression and/or improve plaque stability. VSMCs play a pivotal role in atherogenesis. Loss of VSMCs via initiation of cell death leads to fibrous cap thinning and promotes necrotic core formation and calcification. VSMC apoptosis is induced by pro-inflammatory cytokines, oxidized low density lipoprotein, high levels of nitric oxide and mechanical injury. Apoptotic VSMCs are characterized by a thickened basal lamina surrounding the cytoplasmic remnants of the VSMC. Inefficient clearance of apoptotic VSMCs results in secondary necrosis and subsequent inflammation. A critical determinant in the VSMC stress response and phenotypic switching is autophagy, which is activated by various stimuli, including reactive oxygen and lipid species, cytokines, growth factors and metabolic stress. Successful autophagy stimulates VSMC survival, whereas reduced autophagy promotes age-related changes in the vasculature. Recently, an interesting link between autophagy and VSMC senescence has been uncovered. Defective VSMC autophagy accelerates not only the development of stress-induced premature senescence but also atherogenesis, albeit without worsening plaque stability. VSMC senescence in atherosclerosis is likely a result of replicative senescence and/or stress-induced premature senescence in response to DNA damaging and/or oxidative stress-inducing stimuli. The finding that VSMC senescence can promote atherosclerosis further illustrates that normal, adequate VSMC function is crucial in protecting the vessel wall against atherosclerosis.


Assuntos
Aterosclerose/patologia , Autofagia , Senescência Celular , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Animais , Artérias/metabolismo , Artérias/patologia , Artérias/fisiopatologia , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Proliferação de Células , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Fenótipo , Placa Aterosclerótica , Transdução de Sinais
10.
PLoS One ; 12(1): e0169608, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28060909

RESUMO

BACKGROUND AND AIMS: Increased evidence suggests a pro-atherogenic role for conventional dendritic cells (cDC). However, due to the lack of an exclusive marker for cDC, their exact contribution to atherosclerosis remains elusive. Recently, a unique transcription factor was described for cDC, namely Zbtb46, enabling us to selectively target this cell type in mice. METHODS: Low-density lipoprotein receptor-deficient (Ldlr-/-) mice were transplanted with bone marrow from Zbtb46-diphtheria toxin receptor (DTR) transgenic mice following total body irradiation. Zbtb46-DTR→Ldlr-/- chimeras were fed a Western-type diet for 18 weeks while cDC were depleted by administering diphtheria toxin (DT). RESULTS: Although we confirmed efficient direct induction of cDC death in vitro and in vivo upon DT treatment of Zbtb46-DTR mice, advanced atherosclerotic plaque size and composition was not altered. Surprisingly, however, analysis of Zbtb46-DTR→Ldlr-/- chimeras showed that depletion of cDC was not sustained following 18 weeks of DT treatment. In contrast, high levels of anti-DT antibodies were detected. CONCLUSIONS: Because of the observed generation of anti-DT antibodies and consequently the partial depletion of cDC, no clear decision can be taken on the role of cDC in atherosclerosis. Our results underline the unsuitability of Zbtb46-DTR→Ldlr-/- mice for studying the involvement of cDC in maintaining the disease process of atherosclerosis, as well as of other chronic inflammatory diseases.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Aterosclerose/patologia , Biomarcadores , Transplante de Medula Óssea , Toxina Diftérica/imunologia , Toxina Diftérica/farmacologia , Modelos Animais de Doenças , Feminino , Contagem de Leucócitos , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Placa Aterosclerótica/patologia , Receptores de LDL/deficiência
11.
Oxid Med Cell Longev ; 2016: 3087469, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27847551

RESUMO

Apoptosis of macrophages and vascular smooth muscle cells (VSMCs) in advanced atherosclerotic plaques contributes to plaque progression and instability. Caspase-3, a key executioner protease in the apoptotic pathway, has been identified in human and mouse atherosclerotic plaques but its role in atherogenesis is not fully explored. We therefore investigated the impact of caspase-3 deletion on atherosclerosis by crossbreeding caspase-3 knockout (Casp3-/-) mice with apolipoprotein E knockout (ApoE-/-) mice. Bone marrow-derived macrophages and VSMCs isolated from Casp3-/-ApoE-/- mice were resistant to apoptosis but showed increased susceptibility to necrosis. However, caspase-3 deficiency did not sensitize cells to undergo RIP1-dependent necroptosis. To study the effect on atherosclerotic plaque development, Casp3+/+ApoE-/- and Casp3-/-ApoE-/- mice were fed a western-type diet for 16 weeks. Though total plasma cholesterol, triglycerides, and LDL cholesterol levels were not altered, both the plaque size and percentage necrosis were significantly increased in the aortic root of Casp3-/-ApoE-/- mice as compared to Casp3+/+ApoE-/- mice. Macrophage content was significantly decreased in plaques of Casp3-/-ApoE-/- mice as compared to controls, while collagen content and VSMC content were not changed. To conclude, deletion of caspase-3 promotes plaque growth and plaque necrosis in ApoE-/- mice, indicating that this antiapoptotic strategy is unfavorable to improve atherosclerotic plaque stability.


Assuntos
Apolipoproteínas E/deficiência , Caspase 3/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Apoptose , Camundongos , Camundongos Knockout , Necrose
12.
Eur J Med Chem ; 123: 631-638, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27517808

RESUMO

Atg4B is a cysteine hydrolase that plays a key role in autophagy. Although it has been proposed as an attractive drug target, inhibitor discovery has proven highly challenging. The absence of a standardized, easily implementable enzyme activity/inhibition assay for Atg4B most likely contributes to this situation. Therefore, three different assay types for Atg4B activity/inhibition quantification were first compared: (1) an approach using fluorogenic Atg4B-substrates, (2) an in-gel densitometric quantification assay and (3) a thermal shift protocol. The gel-based approach showed the most promising results and was validated for screening of potential Atg4B inhibitors. A set of 8 literature inhibitors was included. Remarkably, in our hands only 2 literature references were found to have measurable Atg4B affinity. Furthermore, a fragment library (n = 182) was tested for Atg4B inhibition. One library member showed inhibition at high micromolar concentration and was found fit for further, fragment-based inhibitor design.


Assuntos
Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Ensaios Enzimáticos , Inibidores de Cisteína Proteinase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Eletroforese , Humanos , Temperatura
13.
Atherosclerosis ; 252: 166-174, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27425215

RESUMO

BACKGROUND AND AIMS: A large necrotic core is a key feature of atherosclerotic plaque instability. Necrotic cellular debris accumulates in the lipid-rich core and promotes inflammation, destabilization and ultimately rupture of the plaque. Although the role of necrosis in atherosclerosis is rather clear-cut, not many strategies have been performed up till now to specifically target plaque necrosis. In the present study, we tested the plaque stabilizing potential of NecroX-7, a novel compound with antioxidative and anti-necrotic properties. METHODS: Male apolipoprotein E (Apoe) knockout mice were treated with NecroX-7 (30 mg/kg) or vehicle, 3 times per week, via intraperitoneal injections for 16 weeks. Meanwhile, mice were fed a western-type diet to induce plaque formation. RESULTS: NecroX-7 reduced total plaque burden in the thoracic aorta as compared to vehicle-treated mice, without affecting total plasma cholesterol. Plaques in the aortic root of NecroX-7-treated mice showed a significant decrease in necrotic core area, 8-oxodG, iNOS and MMP13 expression, while collagen content and minimum fibrous cap thickness were increased. Moreover, NecroX-7 treatment reduced the expression of multiple inflammation markers such as TNFα, IL1ß, iNOS, HMGB1 and RAGE in a NF-κB-dependent manner. In vitro, NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced mitochondrial ROS formation, necrosis, iNOS expression and HMGB1 release in primary macrophages. CONCLUSIONS: NecroX-7 improves features of plaque stability in Apoe knockout mice by reducing necrotic core formation, oxidative stress and inflammation, and by increasing collagen deposition and fibrous cap thickness. Therefore, NecroX-7 could be a promising pleiotropic drug for the treatment of atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Proteína HMGB1/metabolismo , Macrófagos/metabolismo , Compostos Orgânicos/farmacologia , Estresse Oxidativo , Placa Aterosclerótica/tratamento farmacológico , Animais , Aterosclerose/metabolismo , Células da Medula Óssea/citologia , LDL-Colesterol/metabolismo , Colágeno/metabolismo , Inflamação , Peroxidação de Lipídeos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Necrose , Placa Aterosclerótica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA