Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 25(6): 927-944, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28598860

RESUMO

BACKGROUND: Cone-beam computed tomography (CBCT) is widely used in various medical imaging applications, including dental examinations. Dental CBCT images often suffer from motion artifacts caused by involuntary rigid motion of patients. However, earlier motion compensation studies are not applicable for dental CBCT systems using truncated detectors. OBJECTIVE: This study proposes a novel motion correction algorithm that can be applied for truncated dental CBCT images. METHODS: We propose a two-step method for motion correction. First, we estimate the relative displacement of each pair of opposite projections by finding the motion vector that maximizes the two-dimensional correlation coefficients of the opposite projections. Second, we convert the relative displacement into the absolute coordinate motion that yields the highest image sharpness of the reconstruction image. Using the motion vectors in the absolute coordinate system, motion artifacts are then compensated by modifying the trajectory of the source and detector during the back-projection step of the image reconstruction process. RESULTS: In simulation, the proposed method successfully estimated the true relative displacement. After converting to the absolute coordinate motions, the motion-compensated image was close to the ground-truth image and exhibited a lower mean-square-error than that of the uncompensated image. The results from the real data experiment also confirmed that the proposed method successfully compensated for the motion artifacts. CONCLUSIONS: The experimental results confirmed that the proposed method was applicable to most dental CBCT systems using a truncated detector without any use of an additional motion tracking system nor prior knowledge.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Dentária/métodos , Algoritmos , Humanos , Imagens de Fantasmas
2.
IEEE Trans Med Imaging ; 40(12): 3932-3944, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34329157

RESUMO

Metal artifact reduction (MAR) is one of the most important research topics in computed tomography (CT). With the advance of deep learning approaches for image reconstruction, various deep learning methods have been suggested for metal artifact reduction, among which supervised learning methods are most popular. However, matched metal-artifact-free and metal artifact corrupted image pairs are difficult to obtain in real CT acquisition. Recently, a promising unsupervised learning for MAR was proposed using feature disentanglement, but the resulting network architecture is so complicated that it is difficult to handle large size clinical images. To address this, here we propose a simple and effective unsupervised learning method for MAR. The proposed method is based on a novel ß -cycleGAN architecture derived from the optimal transport theory for appropriate feature space disentanglement. Moreover, by adding the convolutional block attention module (CBAM) layers in the generator, we show that the metal artifacts can be more focused so that it can be effectively removed. Experimental results confirm that we can achieve improved metal artifact reduction that preserves the detailed texture of the original image.


Assuntos
Artefatos , Metais , Atenção , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X
3.
Med Image Anal ; 74: 102209, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450466

RESUMO

In electrocardiography (ECG) gated cardiac CT angiography (CCTA), multiple images covering the entire cardiac cycle are taken continuously, so reduction of the accumulated radiation dose could be an important issue for patient safety. Although ECG-gated dose modulation (so-called ECG pulsing) is used to acquire many phases of CT images at a low dose, the reduction of the radiation dose introduces noise into the image reconstruction. To address this, we developed a high performance unsupervised deep learning method using noise disentanglement that can effectively learn the noise patterns even from extreme low dose CT images. For noise disentanglement, we use a wavelet transform to extract the high-frequency signals that contain the most noise. Since matched low-dose and high-dose cardiac CT data are impossible to obtain in practice, our neural network was trained in an unsupervised manner using cycleGAN for the extracted high frequency signals from the low-dose and unpaired high-dose CT images. Once the network is trained, denoised images are obtained by subtracting the estimated noise components from the input images. Image quality evaluation of the denoised images from only 4% dose CT images was performed by experienced radiologists for several anatomical structures. Visual grading analysis was conducted according to the sharpness level, noise level, and structural visibility. Also, the signal-to-noise ratio was calculated. The evaluation results showed that the quality of the images produced by the proposed method is much improved compared to low-dose CT images and to the baseline cycleGAN results. The proposed noise-disentangled cycleGAN with wavelet transform effectively removed noise from extreme low-dose CT images compared to the existing baseline algorithms. It can be an important denoising platform for low-dose CT.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Redes Neurais de Computação , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA