RESUMO
Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.
Assuntos
Implantação do Embrião , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno , Progesterona , Útero , Animais , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Infertilidade Feminina , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosforilação , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Útero/enzimologia , Útero/metabolismoRESUMO
A simple and efficient strategy has been developed for the synthesis of organic nitrate esters via visible-light-induced multi-component nitrooxylation reactions of α-diazoesters, cyclic ethers, and tert-butyl nitrite under open air atmosphere. This transformation could be conducted under mild and metal-free conditions to provide a number of organic nitrate esters in moderate to good yields using air as the green oxidant.
RESUMO
Ovarian fibrosis, characterized by the excessive proliferation of ovarian fibroblasts and the accumulation of extracellular matrix (ECM), serves as one of the primary causes of ovarian dysfunction. Despite the critical role of ovarian fibrosis in maintaining the normal physiological function of the mammalian ovaries, research on this condition has been greatly underestimated, which leads to a lack of clinical treatment options for ovarian dysfunction caused by fibrosis. This review synthesizes recent research on the molecular mechanisms of ovarian fibrosis, encompassing TGF-ß, extracellular matrix, inflammation, and other profibrotic factors contributing to abnormal ovarian fibrosis. Additionally, we summarize current treatment approaches for ovarian dysfunction targeting ovarian fibrosis, including antifibrotic drugs, stem cell transplantation, and exosomal therapies. The purpose of this review is to summarize the research progress on ovarian fibrosis and to propose potential therapeutic strategies targeting ovarian fibrosis for the treatment of ovarian dysfunction.
Assuntos
Fibrose , Ovário , Humanos , Feminino , Ovário/patologia , Ovário/metabolismo , Animais , Matriz Extracelular/metabolismo , Doenças Ovarianas/metabolismo , Doenças Ovarianas/patologia , Doenças Ovarianas/terapia , Terapia de Alvo Molecular , Fator de Crescimento Transformador beta/metabolismoRESUMO
Beef is a popular meat product that can spoil and lose quality during postharvest handling and storage. This review examines different preservation methods for beef, from conventional techniques like low-temperature preservation, irradiation, vacuum packing, and chemical preservatives, to novel approaches like bacteriocin, essential oil, and non-thermal technologies. It also discusses how these methods work and affect beef quality. The review shows that beef spoilage is mainly due to enzymatic and microbial activities that impact beef freshness, texture, and quality. Although traditional preservation methods can extend beef shelf life, they have some drawbacks and limitations. Therefore, innovative preservation methods have been created and tested to improve beef quality and safety. These methods have promising results and potential applications in the beef industry. However, more research is needed to overcome the challenges and barriers for their commercialization. This review gives a comprehensive and critical overview of the current and emerging preservation methods for beef and their implications for the beef supply chain.
Assuntos
Conservação de Alimentos , Carne Vermelha , Animais , Bovinos , Conservação de Alimentos/métodos , Carne Vermelha/microbiologia , Armazenamento de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Microbiologia de Alimentos , Vácuo , Manipulação de Alimentos/métodosRESUMO
BACKGROUND: Traditional Chinese medicine has been used for a long time to treat a variety of gynecological diseases. Among various traditional Chinese medicine, Dingkun Pill (DK) has been used for the treatment of female gynecological diseases. However, DK therapeutic effect on PCOS and the target tissue for its potential effect need to be explored. This study aims to explore the therapeutic effect of DK for PCOS in mice from three aspects: metabolism, endocrine and fertility, and determine whether the brown adipose tissue is the target organ to alleviate the PCOS phenotype. METHODS: PCOS mouse model was constructed by subcutaneous injection of DHEA. The estrous cycle, ovulation, and pregnancy outcome was examined in mice. The level of hormone including the LH, FSH, estrogen and testosterone in the serum were measured by ELISA. Both the glucose sensitivity and insulin sensitivity were determined in mice with different treatment. The histomorphology and lipid contents in the brown adipose tissue were analyzed. RNA-Seq was conducted for the brown adipose tissue and different expression of critical metabolism marker genes was confirmed by real-time PCR. RESULTS: The data showed that the fertility in PCOS mice with DK treatment was significantly increased, and the metabolic disorder was partially restored. Both the whiten of brown adipose tissue and reduced UCP1 expression induced by DHEA was rescued by the DK. The RNA-Seq data further demonstrated both the DHEA induced downregulation of lipolysis genes and oxidative phosphorylation genes were at least partially rescued by DK in the brown adipose tissue. CONCLUSIONS: DK has therapeutic effect on PCOS in DHEA treated mice and the brown adipose tissue is at least one critical target organ to alleviate the PCOS. This is achieved by not only regulating the lipid mobilization of brown adipose, but also restoring its thermogenic function.
Assuntos
Síndrome do Ovário Policístico , Feminino , Animais , Camundongos , Gravidez , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Tecido Adiposo Marrom , Fertilidade , Regulação para Baixo , DesidroepiandrosteronaRESUMO
Plant-based meat products have gained attention in the food industry and with consumers. Plant-based meat products primarily comprise plant proteins and are rich in nutrients. However, the products are highly susceptible to bacterial contamination during storage. Biological preservatives are easily degradable alternatives to chemical preservatives and can preserve different kinds of food. In order to investigate the preservation properties of chitosan (CS), tea polyphenols (TPs), and nisin treatments on plant-based meats, the sensory evaluation, color difference, pH, TBARS, and the total plate count of E. coli, S. aureus, and Salmonella, indicators of the biological preservative-treated plant-based meat, were determined in this study. The experiment involved blank control- and biological preservative-treated samples. We found that the total microbial count exceeded the national standard provisions in the control samples stored for 14 days. The colors, tissue structures, and flavors of plant-based meat have gradually deteriorated, with the sensory score dropping from 90 to 52. The sample had a loose tissue structure and an obvious sour taste. However, the shelf life of the plant-based meat samples treated with different combinations of the biological preservatives increased compared to the shelf life of the control samples. After 56 d of storage, 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin sensory reduction to 56, the total number of colonies and S. aureus were 4.91 and 2.95 lg CFU/g, approaching the national standard threshold; E. coli was 2 lg CFU/g, reaching the national standard threshold. Thus, the samples treated with 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin had the longest shelf life (56 days) among all experimental groups. Hence, this study reveals that a combination of biological preservatives may be a non-toxic alternative for the efficient preservation of plant-based meat products.