Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(9): e18310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38676361

RESUMO

Studies have shown that adoptive transfer of myeloid-derived suppressor cells (MDSCs) can alleviate various inflammatory diseases, including glomerulonephritis, but the long-term effects of the transferred MDSCs are still unclear. In addition, although glucocorticoids exert immunosuppressive effects on inflammatory diseases by inducing the expansion of MDSCs, the impact of glucocorticoids on the immunosuppressive function of MDSCs and their molecular mechanisms are unclear. In this study, we found that adoptive transfer of MDSCs to doxorubicin-induced focal segmental glomerulosclerosis (FSGS) mice for eight consecutive weeks led to an increase in serum creatinine and proteinuria and aggravation of renal interstitial fibrosis. Similarly, 8 weeks of high-dose dexamethasone administration exacerbated renal interstitial injury and interstitial fibrosis in doxorubicin-induced mice, manifested as an increase in serum creatinine and proteinuria, collagen deposition and α-SMA expression. On this basis, we found that dexamethasone could enhance MDSC expression and secretion of the fibrosis-related cytokines TGF-ß and IL-10. Mechanistically, we revealed that dexamethasone promotes the expression of immunoglobulin-like transcription factor 4 (ILT4), which enhances the T-cell inhibitory function of MDSCs and promotes the activation of STAT6, thereby strengthening the expression and secretion of TGF-ß and IL-10. Knocking down ILT4 alleviated renal fibrosis caused by adoptive transfer of MDSCs. Therefore, our findings demonstrate that the role and mechanism of dexamethasone mediate the expression and secretion of TGF-ß and IL-10 in MDSCs by promoting the expression of ILT4, thereby leading to renal fibrosis.


Assuntos
Dexametasona , Fibrose , Células Supressoras Mieloides , Animais , Dexametasona/farmacologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Camundongos , Rim/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Masculino , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Transferência Adotiva , Modelos Animais de Doenças , Regulação para Cima/efeitos dos fármacos , Interleucina-10/metabolismo , Interleucina-10/genética , Fator de Crescimento Transformador beta/metabolismo
2.
Eur Radiol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730032

RESUMO

OBJECTIVES: To evaluate the intracranial structures and brain parenchyma radiomics surrounding the occipital horn of the lateral ventricle in normal fetuses (NFs) and fetuses with ventriculomegaly (FVs), as well as to predict postnatally enlarged lateral ventricle alterations in FVs. METHODS: Between January 2014 and August 2023, 141 NFs and 101 FVs underwent 1.5 T balanced steady-state free precession (BSSFP), including 68 FVs with resolved lateral ventricles (FVM-resolved) and 33 FVs with stable lateral ventricles (FVM-stable). Demographic data and intracranial structures were analyzed. To predict the enlarged ventricle alterations of FVs postnatally, logistic regression models with 5-fold cross-validation were developed based on lateral ventricle morphology, blended-cortical or/and subcortical radiomics characteristics. Validation of the models' performance was conducted using the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). RESULTS: Significant alterations in cerebral structures were observed between NFs and FVs (p < 0.05), excluding the maximum frontal horn diameter (FD). However, there was no notable distinction between the FVM-resolved and FVM-stable groups (all p > 0.05). Based on subcortical-radiomics on the aberrant sides of FVs, this approach exhibited high efficacy in distinguishing NFs from FVs in the training/validation set, yielding an impressive AUC of 1/0.992. With an AUC value of 0.822/0.743 in the training/validation set, the Subcortical-radiomics model demonstrated its ability to predict lateral ventricle alterations in FVs, which had the greatest predictive advantages indicated by DCA. CONCLUSIONS: Microstructural alterations in subcortical parenchyma associated with ventriculomegaly can serve as predictive indicators for postnatal lateral ventricle variations in FVs. CLINICAL RELEVANCE STATEMENT: It is critical to gain pertinent information from a solitary fetal MRI to anticipate postnatal lateral ventricle alterations in fetuses with ventriculomegaly. This approach holds the potential to diminish the necessity for recurrent prenatal ultrasound or MRI examinations. KEY POINTS: Fetal ventriculomegaly is a dynamic condition that affects postnatal neurodevelopment. Machine learning and subcortical-radiomics can predict postnatal alterations in the lateral ventricle. Machine learning, applied to single-fetal MRI, might reduce required antenatal testing.

3.
Angew Chem Int Ed Engl ; 63(26): e202404734, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38635373

RESUMO

The development of porous materials with flexible-robust characteristics shows some unique advantages to target high performance for gas separation, but remains a daunting challenge to achieve so far. Herein, we report a carboxyl-based hydrogen-bonded organic framework (ZJU-HOF-8a) with flexible-robust porosity for efficient purification of natural gas. ZJU-HOF-8a features a four-fold interpenetrated structure with dia topology, wherein abundant supramolecular entanglements are formed between the adjacent subnetworks through weak intermolecular hydrogen bonds. This structural configuration could not only stabilize the whole framework to establish the permanent porosity, but also enable the framework to show some flexibility due to its weak intermolecular interactions (so-called flexible-robust framework). The flexible-robust porosity of ZJU-HOF-8a was exclusively confirmed by gas sorption isotherms and single-crystal X-ray diffraction studies, showing that the flexible pore pockets can be opened by C3H8 and n-C4H10 molecules rather by C2H6 and CH4. This leads to notably higher C3H8 and n-C4H10 uptakes with enhanced selectivities than C2H6 over CH4 under ambient conditions, affording one of the highest n-C4H10/CH4 selectivities. The gas-loaded single-crystal structures coupled with theoretical simulations reveal that the loading of n-C4H10 can induce an obvious framework expansion along with pore pocket opening to improve n-C4H10 uptake and selectivity, while not for C2H6 adsorption. This work suggests an effective strategy of designing flexible-robust HOFs for improving gas separation properties.

4.
Angew Chem Int Ed Engl ; 62(12): e202218590, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36691771

RESUMO

Developing porous materials for C3 H6 /C3 H8 separation faces the challenge of merging excellent separation performance with high stability and easy scalability of synthesis. Herein, we report a robust Hofmann clathrate material (ZJU-75a), featuring high-density strong binding sites to achieve all the above requirements. ZJU-75a adsorbs large amount of C3 H6 with a record high storage density of 0.818 g mL-1 , and concurrently shows high C3 H6 /C3 H8 selectivity (54.2) at 296 K and 1 bar. Single-crystal structure analysis unveil that the high-density binding sites in ZJU-75a not only provide much stronger interactions with C3 H6 but also enable the dense packing of C3 H6 . Breakthrough experiments on gas mixtures afford both high separation factor of 14.7 and large C3 H6 uptake (2.79 mmol g-1 ). This material is highly stable and can be easily produced at kilogram-scale using a green synthesis method, making it as a benchmark material to address major challenges for industrial C3 H6 /C3 H8 separation.

5.
J Am Chem Soc ; 144(7): 3200-3209, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138086

RESUMO

The discovery of high-performance adsorbents for highly efficient separation of xenon from krypton is an important but challenging task in the chemical industry due to their similar size and inert spherical nature. Herein, we report two robust and radiation-resistant Hofmann-type MOFs, Co(pyz)[Ni(CN)4] and Co(pyz)[Pd(CN)4] (termed as ZJU-74a-Ni and ZJU-74a-Pd), featuring oppositely adjacent open metal sites and perfect pore sizes (4.1 and 3.8 Å) comparable to the kinetic diameter of xenon (4.047 Å), affording the benchmark binding affinity for polarizable Xe gas. These materials thus exhibit both record-high Xe uptake capacities (89.3 and 98.4 cm3 cm-3 at 296 K and 0.2 bar) and Xe/Kr selectivities (74.1 and 103.4) at ambient conditions, all of which are the highest among all the state-of-the-art materials reported so far. The locations of Xe molecules within ZJU-74a-Ni have been visualized by single-crystal X-ray diffraction studies, in which two oppositely adjacent metal centers combined with the right aperture size can construct a unique sandwich-like binding site to offer unprecedented and ultrastrong Ni2+-Xe-Ni2+ interactions with xenon, thus leading to the record Xe capture capacity and selectivity. The excellent separation capacity of ZJU-74a-Pd was verified by breakthrough experiments for Xe/Kr gas mixtures, providing both unprecedentedly high xenon uptake capacity (4.63 mmol cm-3) and krypton productivity (214 cm3 g-1).

6.
J Am Chem Soc ; 144(6): 2614-2623, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35109657

RESUMO

Purification of C2H4 from a ternary C2H2/C2H6/C2H4 mixture by one-step adsorption separation is of prime importance but challenging in the petrochemical industry; however, effective strategies to design high-performance adsorbents are lacking. We herein report for the first time the incorporation of Lewis basic sites into a C2H6-selective MOF, enabling efficient one-step production of polymer-grade C2H4 from ternary mixtures. Introduction of amino groups into highly stable C2H6-selective UiO-67 can not only partition large pores into smaller cagelike pockets to provide suitable pore confinement but also offer additional binding sites to simultaneously enhance C2H2 and C2H6 adsorption capacities over C2H4. The amino-functionalized UiO-67-(NH2)2 thus exhibits exceptionally high C2H2 and C2H6 uptakes as well as benchmark C2H2/C2H4 and C2H6/C2H4 selectivities, surpassing all of the C2H2/C2H6-selective materials reported so far. Theoretical calculations combined with in situ infrared spectroscopy indicate that the synergetic effect of suitable pore confinement and functional surfaces decorated with amino groups provides overall stronger multipoint van der Waals interactions with C2H2 and C2H6 over C2H4. The exceptional performance of UiO-67-(NH2)2 was evidenced by breakthrough experiments for C2H2/C2H6/C2H4 mixtures under dry and wet conditions, providing a remarkable C2H4 productivity of 0.55 mmol g-1 at ambient conditions.

7.
Opt Express ; 30(4): 4919-4929, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209464

RESUMO

Top-illuminated PIN photodetectors (PDs) are widely utilized in telecommunication systems, and more efforts have been focused on optimizing the optical responsibility and bandwidth for high-speed and capacity applications. In this work, we develop an integrated top-illuminated InP/InGaAs PIN PD with a back reflector by using a microtransfer printing (µ-TP) process. An improved µ-TP process, where the tether of silicon nitride instead of photoresist, is selected to support an underetched III-V device on an InP substrate before transfer. According to theoretical simulations and experimental measurements, the seamless integration of the PD with a back reflector through µ-TP process makes full use of the 2nd or even multiple reflecting light in the absorption layer to optimize the maximum responsibility. The integrated device with a 5 µm square p-mesa possesses a high optical responsibility of 0.78 A/W and 3 dB bandwidth of 54 GHz using a 500 nm i-InGaAs absorption layer. The present approach for top-illuminated PIN PDs demonstrates an advanced route in which a thin intrinsic layer is available for application in high-performance systems.

8.
J Comput Assist Tomogr ; 46(3): 406-412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35405718

RESUMO

OBJECTIVE: We aimed to prospectively investigate intravoxel incoherent motion parameters to predict the response to chemotherapy in locally advanced non-small cell lung cancer (NSCLC) patients. METHODS: From July 2016 to March 2018, 30 advanced NSCLC patients were enrolled and underwent chest intravoxel incoherent motion-diffusion-weighted imaging at Siemens 3T magnetic resonance imaging before and at the end of the first cycle of chemotherapy. Regions of interest were drawn including the whole tumor volume to derive the apparent diffusion coefficient value, D, D*, and f, respectively. Time-dependent receiver operating characteristic curves were generated to evaluate the cutoff values of continuous variables. A Cox proportional hazards model was used to assess the independent predictors of progression-free survival (PFS) and overall survival (OS). Kaplan-Meier curves and log-rank test were generated. RESULTS: Among the 30 patients, 28 cases (93.3%) died and 2 cases (6.7%) survived till the closeout date. Univariate Cox regression analyses revealed that the significant predictors of PFS and OS were the tumor size reduction rate, the change rates of D and apparent diffusion coefficient values, and the D value before therapy (PFS: P = 0.015, hazard ratio [HR] = 2.841; P < 0.001, HR = 5.840; P = 0.044, HR = 2.457; and P = 0.027, HR = 2.715; OS: P = 0.008, HR = 2.987; P < 0.001, HR = 4.357; P = 0.006, HR = 3.313; and P = 0.013, HR = 2.941, respectively). Multivariate Cox regression analysis suggested that △D% was identified as independent predictors of both PFS and OS (P = 0.003, HR = 9.200 and P = 0.016, HR = 4.617). In addition, the cutoff value of △D% was 21.06% calculated by receiver operating characteristic curve analysis. In the Kaplan-Meier analysis, the PFS and OS were significantly greater in the group of patients with △D% larger than 21.06% (log-rank test, χ2 = 16.453, P < 0.001; χ2 = 13.952, P < 0.001). CONCLUSIONS: Intravoxel incoherent motion-diffusion-weighted imaging was preferred for predicting the prognosis of advanced NSCLC patients treated with chemotherapy. A D increase more than 21.06% at 1 month was associated with a lower rate of disease progression and death.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Imageamento por Ressonância Magnética , Movimento (Física)
9.
Angew Chem Int Ed Engl ; 61(41): e202211523, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35979632

RESUMO

Developing porous materials to overcome the trade-off between adsorption capacity and selectivity for C2 H2 /CO2 separation remains a challenge. Herein, we report a stable HKUST-1-like MOF (ZJU-50a), featuring large cages decorated with high density of supramolecular binding sites to achieve both high C2 H2 storage and selectivity. ZJU-50a exhibits one of the highest C2 H2 storage capacity (192 cm3 g-1 ) and concurrently high C2 H2 /CO2 selectivity (12) at 298 K and 1 bar. Single-crystal X-ray diffraction studies on gas-loaded ZJU-50a crystal unveil that the incorporated supramolecular binding sites can selectively take up C2 H2 molecule but not CO2 to result in both high C2 H2 storage and selectivity. Breakthrough experiments validated its separation performance for C2 H2 /CO2 mixtures, providing a high C2 H2 recovery capacity of 84.2 L kg-1 with 99.5 % purity. This study suggests a novel strategy of engineering supramolecular binding sites into MOFs to overcome the trade-off for this separation.

10.
Angew Chem Int Ed Engl ; 60(47): 25068-25074, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34529885

RESUMO

Porous materials for C2 H2 /CO2 separation mostly suffer from high regeneration energy, poor stability, or high cost that largely dampen their industrial implementation. A desired adsorbent should have an optimal balance between excellent separation performance, high stability, and low cost. We herein report a stable, low-cost, and easily scaled-up aluminum MOF (CAU-10-H) for highly efficient C2 H2 /CO2 separation. The suitable pore confinement in CAU-10-H can not only provide multipoint binding interactions with C2 H2 but also enable the dense packing of C2 H2 inside the pores. This material exhibits one of the highest C2 H2 storage densities of 392 g L-1 and highly selective adsorption of C2 H2 over CO2 at ambient conditions, achieved by a low C2 H2 adsorption enthalpy (27 kJ mol-1 ). Breakthrough experiments confirm its exceptional separation performance for C2 H2 /CO2 mixtures, affording both large C2 H2 uptake of 3.3 mmol g-1 and high separation factor of 3.4. CAU-10-H achieves the benchmark balance between separation performance, stability, and cost for C2 H2 /CO2 separation.

11.
J Xray Sci Technol ; 28(2): 333-344, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083610

RESUMO

OBJECTIVE: To investigate the measurement reproducibility of the maximum diameter on MRI routine sequence (T1WI, T2WI, DWI) and CT in peripheral and central lung cancer, and to provide reference standard for evaluating treatment responses for lung cancer. METHODS: 53 patients with lung cancer underwent CT and 3.0T MR scanning. The maximum diameter was measured according to the RECIST1.1 standard on images of CT (lung and enhanced mediastinal window), MRI T2-BLADE, axial T1-VIBE and DWIb0, DWIb300, DWIb800, respectively. The reproducibility of the diameters was analyzed with intraclass correlation coefficient (ICC), and the distribution of measurement points with the Bland-Altman method. The difference analysis was assessed by paired samples t-test and nonparametric rank sum test, P < 0.05 is considered statistically significant. RESULTS: Reproducibility of diameters derived from routine MRI and CT was good (ICC > 0.75). For peripheral lung cancer, there was no significant difference in diameters between CT and MRI. While for central lung cancer, there was significant difference in diameters measured between using CT and each MRI sequence. However, the diameters derived from T1-VIBE and T2-BLADE were not significantly different from all DWI sequences. CONCLUSIONS: For peripheral lung cancer, the measurement on CT and routine MRI sequences can potentially replace each other after comprehensive consideration of examination purposes, but for central lung cancer, alternative use of CT and MRI in evaluating treatment responses for lung cancer should needs extra attention. The diameter measurement of lung cancer on DWI is consistent with that on T1WI and T2WI, suggesting that DWI can provide functional and morphological information.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
12.
Arch Environ Contam Toxicol ; 76(1): 87-101, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30443666

RESUMO

PM2.5 samples (particles with aerodynamic diameter < 2.5 µm) were collected along the Guang-Shen expressway around the Qingming Festival, one of the most congested periods in China, which started from April 2-4, in 2016. Twenty-five trace elements and 16 priority polycyclic aromatic hydrocarbons (PAHs) of the samples were analyzed. Their major sources at different periods were identified. The concentrations of PAHs distinctly increased with growing traffic flow 2 days before the Qingming Festival (March 31th and April 1st), decreased gradually on the first 2 days of the 3-day festival (April 2nd and 3rd) and rose again on the last day (April 4th). The proportion changing of higher molecular weight containing 5- and 6-ring PAHs (HMW PAHs) closely related to the traffic flow variation were consistent with the concentration variation of PAHs during the experimental period. Indicators of gasoline/diesel engines emission, i.e., Mo, Co, Mn, and Pb showed similar concentration variation with PAHs. The concentrations of trace elements, mainly derived from wear instead of combustion process, such as Cu, Zn, Ti, and Sb, raised significantly during the rainy days. Incremental lifetime cancer risk (ILCR) values were calculated to evaluate the health risk caused by PAH around the Qingming Festival. The ILCR values increased by 3-10 times 2 days before and on the last day of the festival comparing with other days, as a result of traffic related sources, including engine emission and wearing of tires. It concluded by recommending the necessity of traffic diversion to alleviate the health risk to drivers and nearby residents during important festivals.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Férias e Feriados , Hidrocarbonetos Policíclicos Aromáticos/análise , Oligoelementos/análise , Emissões de Veículos/análise , China
13.
Int J Phytoremediation ; 21(3): 181-190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30656980

RESUMO

Metal decontamination and leaching alleviation capacity of Eucalyptus globulus with and without electric field were investigated using ICP-MS. The biomass production of the chosen plant increased from 0.87 kg in planting control without electrokinetic treatment to 1.16 and 1.42 kg in experiments with electric field supplied by storage battery and solar cell, respectively. Under the influence of electric field with a voltage of 6.5 V, significantly more Cd, Pb and Cu were extracted by the species. Precipitation simulation was performed to evaluate the capacity of battery and solar panel to intercept leaching. The total volume of leachate gathered from the control decreased from 1012 mL to 299 and 336 mL in containers treated by storage battery and solar cell, respectively. In addition to reduction of leachate, the leaching mass of Cd, Pb and Cu was decreased significantly by electric fields (both battery and solar cell) treatments. The effect of remediation and environmental risk alleviation by solar cell was comparable with storage battery, at least during the 30-day experimental period. On the basis of the present study, solar cell should be a suitable substitute for conventional power supply to improve metal polluted soil when considering phytoremediation efficiency and energy consumption.


Assuntos
Eucalyptus , Metais Pesados/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Cádmio , Fontes de Energia Elétrica , Chumbo , Solo
14.
J Environ Manage ; 241: 235-242, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31005001

RESUMO

The influence of combined red and blue light on the capacity of Eucalyptus globulus to phytoremediate a metal-polluted soil was evaluated in this study. Five combinations of blue and red light (0%, 10%, 25%, 50% and 100% blue) at the same intensity were used to treat E. globulus, and its biomass generation, metal uptake and water absorption in phytoremediation under different light treatments were assessed. The plant produced significantly more biomass under blue light, regardless of the ratio, than under single red or white light. The highest biomass was generated under the light ratio of B10R90. In addition, light combination influenced the metal concentrations in different plant tissues. The highest concentrations of Cd and Cu in roots appeared under the light ratio of B0. All metals in plant shoots achieved their highest concentrations under the light ratio of B100, except Pb. Comparing with control, red and blue light combined in varying proportions increased the efficiency remove Cd, Pb and Cu by 50.6-65.6, 71.1-88.7 and 28.9-70.6%, respectively,. The leachate volume under blue and red light combinations was 46.7-66.0% less than control with the combination of B10R90 mitigating the most metal loss. Light sources with different spectra combinations can enhance the phytoremediation efficiency of Eucalyptus globulus and alleviate leaching risk at the same time.


Assuntos
Eucalyptus , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Solo
15.
J Magn Reson Imaging ; 47(4): 1003-1012, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28741732

RESUMO

PURPOSE: To prospectively evaluate the short-term reproducibility of intravoxel incoherent motion (IVIM) parameters and apparent diffusion coefficient (ADC) in lung cancer patients. MATERIALS AND METHODS: In all, 50 patients (50 lesions) underwent free-breathing diffusion-weighted imaging (DWI) (b = 0, 300, 800 s/mm2 ) and IVIM (10 b-values, 0-1000 s/mm2 ) scans twice (0.5-1-hour interval) at 3T. Regions of interests (ROIs) were drawn on ADC maps and IVIM images to derive the mean ADC value and IVIM parameters D, D*, and f. Intra- and interobserver, test-retest reproducibility were assessed with intraclass correlation coefficients (ICCs), within coefficient-of-variations (WCVs), and Bland-Altman analysis. The effects of type, size, and location of lung lesions were compared with WCVs. RESULTS: D and ADC showed good intraobserver reproducibility and interobserver agreement, while D* and f showed relatively larger variability (WCV 20.89-34.97%). The test-retest reproducibility of D and ADC were good (ICC 0.763-0.837; WCV 11.12-12.55%), while those of D* and f were relatively poor (ICC 0.604-0.842; WCV 36.54-72.62%). D and ADC had decreased reproducibility for lesions <2 cm (WCV 14.20%, 16.34%, respectively) and for lesions in the lower lung zones (WCV 16.52%, 14.78%, respectively). f had decreased reproducibility in central lung cancers (WCV 50.11%) and lesions >2 cm (WCV 42.64%). D* had even worse reproducibility in peripheral lung cancers (WCV 84.11%) and lesions in the lower lung zones (WCV 80.84%). CONCLUSION: If the change in ADC, D, D*, and f values is less than ∼31%, 34%, 170%, and 130%, respectively, it may be caused by measurement error. The type, size, and location of lung lesions have an effect on measurement errors. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2018;47:1003-1012.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Variações Dependentes do Observador , Estudos Prospectivos , Reprodutibilidade dos Testes
16.
Ecotoxicol Environ Saf ; 165: 404-410, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218963

RESUMO

Eucalyptus globulus were used to remediate a real scale site endangered by e-waste with electric fields supplied by solar cell and conventional storage battery. The capacity of the species to produce biomass, absorb pollutants and decontaminate metals, as well as the soil moisture of various layers under different treatments was compared. During the 3-month experiment, the output potential of solar cell influenced by weather conditions was less stable (ranging from 0 to 8.3 V) comparing with traditional power supply. Solar cell and storage battery stimulated the growth of the species from 5.92 in control to 7.21 and 7.38 kg per plant, respectively, demonstrating their similar improvement effect. Electric fields of either power source increased the metal concentrations of plant roots and shoots in equal proportions and subsequently greatly promoted the efficiency to decontaminate pollutants. Relative to the control without electric field, solar cell and storage battery treatments reduced the soil moisture of each corresponding layer and consequently, alleviated the leaching risk. At the termination of the experiment, metals tended to distribute in the surface layer under electric field assisted phytoremediation either by solar cell or storage battery. Comparing with conventional battery, solar cell has similar effect on improving remediation and mitigating leaching risk, but is less energy consuming and easier to manage, especially under real scale field. Solar cell treatment was suggested to be a suitable supplementary means to improve phytoremediation efficiency.


Assuntos
Biodegradação Ambiental , Eucalyptus , Metais Pesados/análise , Poluentes do Solo/análise , Energia Solar , Fontes de Energia Elétrica , Técnicas Eletroquímicas , Raízes de Plantas/química , Brotos de Planta/química
17.
Ecotoxicol Environ Saf ; 149: 241-247, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29241117

RESUMO

Direct and alternating current electric fields with various voltages were used to improve the decontamination efficiency of chelator assisted phytoremediation for multi-metal polluted soil. The alleviation effect of electric field on leaching risk caused by chelator application during phytoremediation process was also evaluated. Biomass yield, pollutant uptake and metal leaching retardation under alternating current (AC) and direct current (DC) electric fields were compared. The biomass yield of Eucalyptus globulus under AC fields with various voltages (2, 4 and 10 V) were 3.91, 4.16 and 3.67kg, respectively, significantly higher than the chelator treatment without electric field (2.71kg). Besides growth stimulation, AC fields increased the metal concentrations of plant tissues especially in aerial parts manifested by the raised translocation factor of different metals. Direct current electric fields with low and moderate voltages increased the biomass production of the species to 3.45 and 3.12kg, respectively, while high voltage on the contrary suppressed the growth of the plants (2.66kg). Under DC fields, metal concentrations elevated obviously with increasing voltages and the metal translocation factors were similar under all voltages. Metal extraction per plant achieved the maximum value under moderate voltage due to the greatest biomass production. DC field with high voltage (10V) decreased the volume of leachate from the chelator treatment without electric field from 1224 to 56mL, while the leachate gathered from AC field treatments raised from 512 to 670mL. DC field can retard the downward movement of metals caused by chelator application more effectively relative to AC field due to the constant water flow and electroosmosis direction. Alternating current field had more promotive effect on chelator assisted phytoremediation efficiency than DC field illustrated by more metal accumulation in the species. However, with the consideration of leaching risk, DC field with moderate voltage was the optimal supplementary technique for phytoremediation.


Assuntos
Quelantes/química , Técnicas Eletroquímicas/métodos , Eucalyptus/efeitos dos fármacos , Metais Pesados/análise , Poluentes do Solo/análise , Animais , Biodegradação Ambiental , Biomassa , Eucalyptus/química , Eucalyptus/crescimento & desenvolvimento , Solo/química
18.
J Environ Manage ; 204(Pt 1): 17-22, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28846891

RESUMO

Multiple techniques for soil decontamination were combined to enhance the phytoremediation efficiency of Eucalyptus globulese and alleviate the corresponding environmental risks. The approach constituted of chelating agent using, electrokinetic remediation, plant hormone foliar application and phytoremediation was designed to remediate multi-metal contaminated soils from a notorious e-waste recycling town. The decontamination ability of E. globulese increased from 1.35, 58.47 and 119.18 mg per plant for Cd, Pb and Cu in planting controls to 7.57, 198.68 and 174.34 mg per plant in individual EDTA treatments, respectively, but simultaneously, 0.9-11.5 times more metals leached from chelator treatments relative to controls. Low (2 V) and moderate (4 V) voltage electric fields provoked the growth of the species while high voltage (10 V) had an opposite effect and metal concentrations of the plants elevated with the increment of voltage. Volumes of the leachate decreased from 1224 to 134 mL with voltage increasing from 0 to 10 V due to electroosmosis and electrolysis. Comparing with individual phytoremediation, foliar cytokinin treatments produced 56% more biomass and intercepted 2.5 times more leachate attributed to the enhanced transpiration rate. The synergistic combination of the individuals resulted in the most biomass production and metal accumulation of the species under the stress condition relative to other methods. Time required for the multi-technique approach to decontaminate Cd, Pb and Cu from soil was 2.1-10.4 times less than individual chelator addition, electric field application or plant hormone utilization. It's especially important that nearly no leachate (60 mL in total) was collected from the multi-technique system. This approach is a suitable method to remediate metal polluted site considering its decontamination efficiency and associated environmental negligible risk.


Assuntos
Quelantes/química , Resíduo Eletrônico , Eucalyptus/química , Metais Pesados/análise , Metais/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Biodegradação Ambiental , Biomassa , Eucalyptus/crescimento & desenvolvimento , Reciclagem , Solo
19.
Ecotoxicology ; 24(9): 1947-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318052

RESUMO

Due to the high threat to human health and the ecosystem from metals, the levels and distribution of As, Hg, Cr, Co, Ni, Cu, Zn, Cd, Pb, Mn, V, Sn, Sb, Li and Be in various layers of soil from an e-waste recycling area in Guiyu, China were investigated. The extent of pollution from the metals in soil was assessed using enrichment factors (EFs) and the Nemerow pollution index (P N ). To determine the metals' integrated potential ecological risks, the potential ecological risk index (RI) was chosen. The concentrations of Hg, Ni, Cu, Cd, Pb, Sn and Sb were mainly enriched in the topsoil. EF values (2-5) of the elements Hg, Co, Ni, Zn, Sn, Li and Be revealed their moderate enrichment status in the topsoil, derived from e-waste recycling activities. P N presented a decreasing trend in different layers in the order topsoil (0-20 cm) > deep soil (100-150 cm) > middle soil (50-100 cm) > shallow soil (20-50 cm). With higher potential ecological risk factor (E(i)), Hg and Cd are the main contributors to the potential ecological risk. With respect to the RI, all the values in soil from the study area exceeded 300, especially for the soil at sites S2, S4, S5, S7 and S8, where RI was greater than 600. Therefore, immediate remediation of the contaminated soil is necessary to prevent the release of metals and potential ecological harm.


Assuntos
Arsênio/toxicidade , Resíduo Eletrônico , Metais/toxicidade , Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , China , Humanos , Reciclagem , Medição de Risco
20.
Materials (Basel) ; 17(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673078

RESUMO

Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film lithium niobate has only been realized on the chip level, which significantly limits its applications in large-scale nonlinear photonic systems that necessitate the integration of multiple nonlinear components on a single chip with uniform performances. Here, we demonstrate a wafer-scale periodic poling technique on a 4-inch LNOI wafer with high fidelity. The reversal lengths span from 0.5 to 10.17 mm, encompassing an area of ~1 cm2 with periods ranging from 4.38 to 5.51 µm. Efficient poling was achieved with a single manipulation, benefiting from the targeted grouped electrode pads and adaptable comb line widths in our experiment. As a result, domain inversion is ultimately implemented across the entire wafer with a 100% success rate and 98% high-quality rate on average, showcasing high throughput and stability, which is fundamentally scalable and highly cost-effective in contrast to traditional size-restricted chiplet-level poling. Our study holds significant promise to dramatically promote ultra-high performance to a broad spectrum of applications, including optical communications, photonic neural networks, and quantum photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA