Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Genet ; 29(1): 25-33, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11528387

RESUMO

Although the ras genes have long been established as proto-oncogenes, the dominant role of activated ras in cell transformation has been questioned. Previous studies have shown frequent loss of the wildtype Kras2 allele in both mouse and human lung adenocarcinomas. To address the possible tumor suppressor role of wildtype Kras2 in lung tumorigenesis, we have carried out a lung tumor bioassay in heterozygous Kras2-deficient mice. Mice with a heterozygous Kras2 deficiency were highly susceptible to the chemical induction of lung tumors when compared to wildtype mice. Activating Kras2 mutations were detected in all chemically induced lung tumors obtained from both wildtype and heterozygous Kras2-deficient mice. Furthermore, wildtype Kras2 inhibited colony formation and tumor development by transformed NIH/3T3 cells and a mouse lung tumor cell line containing an activated Kras2 allele. Allelic loss of wildtype Kras2 was found in 67% to 100% of chemically induced mouse lung adenocarcinomas that harbor a mutant Kras2 allele. Finally, an inverse correlation between the level of wildtype Kras2 expression and extracellular signal-regulated kinase (ERK) activity was observed in these cells. These data strongly suggest that wildtype Kras2 has tumor suppressor activity and is frequently lost during lung tumor progression.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Pulmonares/prevenção & controle , Proteínas Proto-Oncogênicas/genética , Animais , Sequência de Bases , Carcinógenos/toxicidade , Divisão Celular/genética , Mapeamento Cromossômico , Primers do DNA , Heterozigoto , Perda de Heterozigosidade , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras
2.
Science ; 249(4968): 553-6, 1990 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-2166336

RESUMO

Yersinia is the genus of bacteria that is the causative agent in plague or the black death, and on several occasions this organism has killed a significant portion of the world's population. An essential virulence determinant of Yersinia was shown to be a protein tyrosine phosphatase. The recombinant 50-kilodalton Yersinia phosphatase had a specificity for removal of phosphate from Tyr-containing as opposed to Ser/Thr-containing phosphopeptides and proteins. Site-directed mutagenesis was used to show that the Yersinia phosphatase possesses an essential Cys residue required for catalysis. Amino acids surrounding an essential Cys residue are highly conserved, as are other amino acids in the Yersinia and mammalian protein tyrosine phosphatases, suggesting that they use a common catalytic mechanism.


Assuntos
Fosfoproteínas Fosfatases/genética , Yersinia/patogenicidade , Sequência de Aminoácidos , Cinética , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases , Homologia de Sequência do Ácido Nucleico , Virulência/genética , Yersinia/enzimologia , Yersinia/genética
3.
Science ; 290(5489): 144-7, 2000 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-11021801

RESUMO

The signal transducers and activators of transcription (STAT) transcription factors become phosphorylated on tyrosine and translocate to the nucleus after stimulation of cells with growth factors or cytokines. We show that the Rac1 guanosine triphosphatase can bind to and regulate STAT3 activity. Dominant negative Rac1 inhibited STAT3 activation by growth factors, whereas activated Rac1 stimulated STAT3 phosphorylation on both tyrosine and serine residues. Moreover, activated Rac1 formed a complex with STAT3 in mammalian cells. Yeast two-hybrid analysis indicated that STAT3 binds directly to active but not inactive Rac1 and that the interaction occurs via the effector domain. Rac1 may serve as an alternate mechanism for targeting STAT3 to tyrosine kinase signaling complexes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas , Transativadores/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Regulação da Expressão Gênica , Genes Reporter , Vetores Genéticos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Janus Quinase 2 , Mutação , Proteínas de Neoplasias , Fosforilação , Fosfosserina/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Ratos , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Transativadores/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Proteínas rac1 de Ligação ao GTP/genética
4.
Nat Commun ; 9(1): 1061, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535383

RESUMO

The Hippo pathway is a central regulator of tissue development and homeostasis, and has been reported to have a role during vascular development. Here we develop a bioluminescence-based biosensor that monitors the activity of the Hippo core component LATS kinase. Using this biosensor and a library of small molecule kinase inhibitors, we perform a screen for kinases modulating LATS activity and identify VEGFR as an upstream regulator of the Hippo pathway. We find that VEGFR activation by VEGF triggers PI3K/MAPK signaling, which subsequently inhibits LATS and activates the Hippo effectors YAP and TAZ. We further show that the Hippo pathway is a critical mediator of VEGF-induced angiogenesis and tumor vasculogenic mimicry. Thus, our work offers a biosensor tool for the study of the Hippo pathway and suggests a role for Hippo signaling in regulating blood vessel formation in physiological and pathological settings.


Assuntos
Técnicas Biossensoriais , Transdução de Sinais/fisiologia , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Mutagênese Sítio-Dirigida , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
Oncogene ; 25(48): 6347-60, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17041621

RESUMO

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls many aspects of cellular physiology, including transcription, translation, cell size, cytoskeletal organization and autophagy. Recent advances in the mTOR signaling field have found that mTOR exists in two heteromeric complexes, mTORC1 and mTORC2. The activity of mTORC1 is regulated by the integration of many signals, including growth factors, insulin, nutrients, energy availability and cellular stressors such as hypoxia, osmotic stress, reactive oxygen species and viral infection. In this review we highlight recent advances in the mTOR signaling field that relate to how the two mTOR complexes are regulated, and we discuss stress conditions linked to the mTOR signaling network that have not been extensively covered in other reviews. Given the diversity of signals that have been shown to impinge on mTOR, we also speculate on other signal-transduction pathways that may be linked to mTOR in the future.


Assuntos
Proteínas Quinases/fisiologia , Animais , Dano ao DNA , Retroalimentação , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Quinases/genética , Transdução de Sinais , Serina-Treonina Quinases TOR
6.
Mol Cell Biol ; 19(8): 5523-34, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10409742

RESUMO

Genetic screens for modifiers of activated Ras phenotypes have identified a novel protein, kinase suppressor of Ras (KSR), which shares significant sequence homology with Raf family protein kinases. Studies using Drosophila melanogaster and Caenorhabditis elegans predict that KSR positively regulates Ras signaling; however, the function of mammalian KSR is not well understood. We show here that two predicted kinase-dead mutants of KSR retain the ability to complement ksr-1 loss-of-function alleles in C. elegans, suggesting that KSR may have physiological, kinase-independent functions. Furthermore, we observe that murine KSR forms a multimolecular signaling complex in human embryonic kidney 293T cells composed of HSP90, HSP70, HSP68, p50(CDC37), MEK1, MEK2, 14-3-3, and several other, unidentified proteins. Treatment of cells with geldanamycin, an inhibitor of HSP90, decreases the half-life of KSR, suggesting that HSPs may serve to stabilize KSR. Both nematode and mammalian KSRs are capable of binding to MEKs, and three-point mutants of KSR, corresponding to C. elegans loss-of-function alleles, are specifically compromised in MEK binding. KSR did not alter MEK activity or activation. However, KSR-MEK binding shifts the apparent molecular mass of MEK from 44 to >700 kDa, and this results in the appearance of MEK in membrane-associated fractions. Together, these results suggest that KSR may act as a scaffolding protein for the Ras-mitogen-activated protein kinase pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ligação a DNA , Proteínas de Drosophila , MAP Quinase Quinase 1 , MAP Quinase Quinase Quinase 1 , Quinases de Proteína Quinase Ativadas por Mitógeno , Chaperonas Moleculares , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição , Tirosina 3-Mono-Oxigenase , Proteínas 14-3-3 , Animais , Benzoquinonas , Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Chaperoninas , Teste de Complementação Genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Helminto/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Lactamas Macrocíclicas , MAP Quinase Quinase 2 , Substâncias Macromoleculares , Camundongos , Modelos Biológicos , Peso Molecular , Complexos Multiproteicos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinonas/farmacologia , Proteínas Elk-1 do Domínio ets
7.
Mol Biol Cell ; 11(2): 663-76, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10679022

RESUMO

Tyrosine phosphorylation plays a central role in eukaryotic signal transduction. In yeast, MAP kinase pathways are regulated by tyrosine phosphorylation, and it has been speculated that other biochemical processes may also be regulated by tyrosine phosphorylation. Previous genetic and biochemical studies demonstrate that protein tyrosine phosphatases (PTPases) negatively regulate yeast MAP kinases. Here we report that deletion of PTP2 and PTP3 results in a sporulation defect, suggesting that tyrosine phosphorylation is involved in regulation of meiosis and sporulation. Deletion of PTP2 and PTP3 blocks cells at an early stage of sporulation before premeiotic DNA synthesis and induction of meiotic-specific genes. We observed that tyrosine phosphorylation of several proteins, including 52-, 43-, and 42-kDa proteins, was changed in ptp2Deltaptp3Delta homozygous deletion cells under sporulation conditions. The 42-kDa tyrosine-phosphorylated protein was identified as Mck1, which is a member of the GSK3 family of protein kinases and previously known to be phosphorylated on tyrosine. Mutation of MCK1 decreases sporulation efficiency, whereas mutation of RIM11, another GSK3 member, specifically abolishes sporulation; therefore, we investigated regulation of Rim11 by Tyr phosphorylation during sporulation. We demonstrated that Rim11 is phosphorylated on Tyr-199, and the Tyr phosphorylation is essential for its in vivo function, although Rim11 appears not to be directly regulated by Ptp2 and Ptp3. Biochemical characterizations indicate that tyrosine phosphorylation of Rim11 is essential for the activity of Rim11 to phosphorylate substrates. Our data demonstrate important roles of protein tyrosine phosphorylation in meiosis and sporulation


Assuntos
Meiose , Fosfotirosina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Esporos Fúngicos/enzimologia , DNA Fúngico/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Expressão Gênica , Genes Essenciais/genética , Genes Essenciais/fisiologia , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Quinase 3 da Glicogênio Sintase , Peptídeos e Proteínas de Sinalização Intracelular , Meiose/genética , Peso Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia , Tirosina/genética , Tirosina/metabolismo
8.
Mol Biol Cell ; 7(1): 57-70, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8741839

RESUMO

Cyclin-dependent kinases 4 and 6 are complexed with many small cellular proteins in vivo. We have isolated cDNA sequences, INK4d, encoding a 19-kDa protein that is associated with CDK6 in several hematopoietic cell lines. p19 shares equal similarity and a common ancestor with other identified inhibitors of the p16/INK4 family. p19 interacts with and inhibits the activity of both CDK4 and CDK6 and exhibits no detectable interaction with the other known CDKs. p19 protein is present in both cell nuclei and cytoplasm. The p19 gene has been mapped to chromosome 19p13.2, and the level of its mRNA expression varies widely between different tissues. In contrast to p21 and p27 whose interaction with CDK subunits is dependent on or stimulated by the cyclin subunit, the interaction of p19 and p18 with CDK6 is hindered by the cyclin protein. Binary cyclin D1-p18/p19 or cyclin D1-CDK6 complexes are highly stable and cannot be dissociated by excess amounts of cyclin D1 or p19/p18 proteins, suggesting that p16 inhibitors and D cyclins may interact with CDKs 4 and 6 in a competing or potentially mutually exclusive manner.


Assuntos
Proteínas de Transporte/isolamento & purificação , Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores Enzimáticos/isolamento & purificação , Regulação da Expressão Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Mapeamento Cromossômico , Clonagem Molecular , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p19 , Quinases Ciclina-Dependentes/metabolismo , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Especificidade de Órgãos , Ligação Proteica , RNA Mensageiro/biossíntese , Coelhos
9.
Cancer Res ; 59(3): 558-64, 1999 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9973200

RESUMO

Members of the INK4 family of cyclin-dependent kinase (CDK) inhibitors specifically bind and inhibit the G1-specific CDK molecules CDK4 and CDK6. One of the INK4 molecules, p16, is also known as multiple tumor suppressor and has been found to be mutated or deleted in various tumors and cell lines. We have previously identified p18 as a member of the INK4 family. To determine the molecular basis for the inhibitory function of p18, we introduced 11 missense mutations of conserved residues that were identified in p16 of cancer cell lines into p18. The effects of these mutations on the ability of p18 to bind and inhibit CDK4 and CDK6 or to inhibit cell growth were determined. Our results indicate that the third ankyrin repeat and the NH2-terminal portion of the fourth repeat constitute the essential element necessary for the ability of p18 to bind and inhibit CDK4 and CDK6. Apart from this core interaction element, p18 seems to use additional, distinct residues to differentially bind and inhibit CDK4 and CDK6, accounting for the known penchant of p18 to preferentially interact with CDK6.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores Enzimáticos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas , Proteínas Supressoras de Tumor , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18 , Quinases Ciclina-Dependentes/metabolismo , Fase G1/fisiologia , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese , Mutação , Osteossarcoma/enzimologia , Osteossarcoma/genética , Proteínas Serina-Treonina Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Células Tumorais Cultivadas
10.
Oncogene ; 35(32): 4179-90, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-26725323

RESUMO

KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations.


Assuntos
Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mitógenos/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ubiquitinação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Mutação , Fosforilação/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo
11.
Oncogene ; 10(8): 1683-8, 1995 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-7731726

RESUMO

Activation of MAP kinase/Erk Kinase (MEK) via direct phosphorylation by Mos may be crucial for cellular transformation by the activated c-mos or v-mos gene. Recent studies on a number of different protein kinases showed that phosphorylation within a subdomain of the catalytic domain may represent a common mode of activation. In this regard, activation of MEK1 by Raf involves phosphorylation of serine residues 218 and 222. Here we show that recombinant kinase-inactive MEK1 is phosphorylated by v-Mos with equal efficiency at both Ser 218 and Ser 222 in vitro. Tryptic phosphopeptide analysis of glutathione-S-transferase (GST)-MEK1 K97R and its alanine-for-serine mutants indicated that Ser 222 is the preferred phosphorylation site. Wild-type GST-MEK1 was phosphorylated at the same sites but contained a significantly lower amount of doubly phosphorylated species then its K97R kinase-inactive mutant. The ratio of GST-MEK1 species phosphorylated at two serines to those phosphorylated at one serine was similar in auto-phosphorylated and v-Mos-phosphorylated GST-MEK1. Consistent with the in vitro data, phosphopeptide mapping of MEK1 immunoprecipitated from mos transformed cells showed an increased amount of singly phosphorylated phosphopeptide compared to nontransformed cels. MEK1 was found to be more highly activated in NIH3T3 cells transformed by an activated c-mos or v-mos gene than in cells growing normally in medium containing serum. Our data indicate that Mos activated MEK1 in vitro as well as in vivo by phosphorylating Ser 222.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Oncogênicas v-mos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Células 3T3 , Animais , Glutationa Transferase/metabolismo , MAP Quinase Quinase 1 , Camundongos , Fosforilação , Proteínas Recombinantes/metabolismo , Serina/metabolismo
12.
Cell Signal ; 6(6): 581-9, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7857762

RESUMO

Activation of the mitogen activated protein kinase (MAPK) plays essential roles in many signal transduction pathways. MAPK has been demonstrated to phosphorylate and regulate numerous cellular proteins, including growth factor receptor, transcription factors, cytoskeletal proteins, phospholipase and other protein kinases. Activation of MAPK requires phosphorylation of both threonine and tyrosine residues, which are catalysed by a single protein kinase known as MAPK kinase or MEK. MEK itself is activated by phosphorylation on two conserved serine residues. Three distinct mammalian Ser/Thr kinases, including Raf, Mos and MEKK (for MEK kinase), have been demonstrated to phosphorylate and activate MEK. The MAP kinase cascade is highly conserved in all eukaryotes and involved in numerous cellular responses. Activation of MAPK is a transient event that is tightly regulated by both kinases and phosphatases. A growth factor induced dual specific phosphatase is likely to play an important role in MAPK regulation.


Assuntos
MAP Quinase Quinase Quinase 1 , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Membrana Celular/fisiologia , Núcleo Celular/fisiologia , Ativação Enzimática , Humanos , MAP Quinase Quinase 2 , Proteína Quinase 1 Ativada por Mitógeno , Fosforilação
13.
Oncogene ; 34(27): 3536-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25195862

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic virus and the culprit behind the human disease Kaposi sarcoma (KS), an AIDS-defining malignancy. KSHV encodes a viral G-protein-coupled receptor (vGPCR) critical for the initiation and progression of KS. In this study, we identified that YAP/TAZ, two homologous oncoproteins inhibited by the Hippo tumor suppressor pathway, are activated in KSHV-infected cells in vitro, KS-like mouse tumors and clinical human KS specimens. The KSHV-encoded vGPCR acts through Gq/11 and G12/13 to inhibit the Hippo pathway kinases Lats1/2, promoting the activation of YAP/TAZ. Furthermore, depletion of YAP/TAZ blocks vGPCR-induced cell proliferation and tumorigenesis in a xenograft mouse model. The vGPCR-transformed cells are sensitive to pharmacologic inhibition of YAP. Our study establishes a pivotal role of the Hippo pathway in mediating the oncogenic activity of KSHV and development of KS, and also suggests a potential of using YAP inhibitors for KS intervention.


Assuntos
Transformação Celular Viral/genética , Herpesvirus Humano 8/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Aciltransferases , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Endocrinology ; 138(10): 4301-7, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9322943

RESUMO

We have shown previously that GH stimulates the mitogen-activated protein (MAP) kinases designated ERKs (extracellular signal-regulated kinases) 1 and 2. To examine pathways coupling GH receptor (GHR) to MAP kinase activation, we have determined the effects of GH on SHC-growth factor receptor bound 2-son of Sevenless (SHC-Grb2-SOS) association and activation of Ras, Raf, and MAP-ERK kinase (MEK). GH promoted the rapid, transient association of SHC with the Grb2-SOS complex, which correlated with the time course of Ras, Raf, and MEK activation. Despite the continuous presence of GH, these activation events were transient with Ras, Raf, and MEK returning to near basal activity by 15 or 30 min. The inactivation of Ras, Raf, and MEK directly correlated with the serine/threonine phosphorylation of SOS and dissociation of SOS from Grb2 but not Grb2 from tyrosine-phosphorylated SHC. Phosphorylation was blocked by the MEK inhibitor, PD98059. Based upon the established functions of the MAP kinase pathway, these data indicate that GH stimulation results in the assembly of a SHC-Grb2-SOS complex that serves to activate Ras and thereby engage the Raf-MEK-ERK pathway. Activation of this pathway generates a feedback kinase cascade that phosphorylates SOS resulting in the dissociation of SHC-Grb2 complexes from SOS, thereby causing a more rapid termination of the signaling pathway than would result from SHC dephosphorylation.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno , Mitógenos/farmacologia , Proteínas Quinases/metabolismo , Receptores da Somatotropina/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Flavonoides/farmacologia , Hormônio do Crescimento/farmacologia , Humanos , MAP Quinase Quinase 1 , Proteínas de Membrana/fisiologia , Camundongos , Fosforilação , Testes de Precipitina , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-raf , Proteínas Son Of Sevenless , Fatores de Tempo , Proteínas ras/fisiologia
15.
Cell Prolif ; 29(12): 655-63, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9146728

RESUMO

We investigated the effect of elevated levels of protein kinase C alpha (PKC alpha) on cell proliferation in human breast carcinoma cells (MCF-7). MCF-7 cells transfected with either the pSV2M(2)6 vector without the insert (MCF-7/Vector) or containing a full length cDNA encoding PKC alpha (MCF-7/PKC alpha) were compared. MCF-7/PKC alpha cells were found to have an increased proliferative rate with a doubling time of 15 h as compared to 42 h for MCF-7/Vector cells. Flow cytometry illustrated a greater percentage of MCF-7/PKC alpha cells in the S phase of the cell cycle. Western and Northern blot analyses demonstrated an increase in extracellular regulated protein kinase 2 (ERK2) gene expression in MCF-7/PKC alpha cells but no alteration of this gene expression in MCF-7/Vector cells. These results suggested that the elevated level of ERK2 which is also known as mitogen activated protein kinase is probably involved in the increase in MCF-7/PKC alpha cell proliferation.


Assuntos
Neoplasias da Mama/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/biossíntese , Divisão Celular/genética , Regulação Neoplásica da Expressão Gênica , Isoenzimas/genética , Proteína Quinase C/genética , Northern Blotting , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Citoplasma/metabolismo , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Vetores Genéticos , Humanos , Isoenzimas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa , Fase S , Transfecção , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/metabolismo
16.
Mech Ageing Dev ; 94(1-3): 71-83, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9147361

RESUMO

Stimulation of the ERK family of protein kinases ('extracellular signal regulated kinases', also known as MAP kinases) plays an important role in the activation of many cell types, including T lymphocytes. ERKs are activated when they are phosphorylated by an upstream activator, the dual-specific protein kinase MEK. To see if aging leads to an impairment of MEK activation in mouse T cells, we used a mobility shift assay in which activation of MEK leads to phosphorylation and altered mobility of ERK-2 kinase. Similarly, we monitored mobility of pp90rsk, a known ERK substrate, as an indication of ERK function. We found an age-related decline in the ability of mouse T cells to activate both MEK and ERK function in response to stimulation by antibodies to the CD3 chain of the T cell receptor. Aging did not alter the kinetics of enzyme activation, but did diminish (by about 2-fold) the maximal level of substrate converted into the slower migrating form. Naive and memory CD4 T cells from young mice were equally able to convert ERK2 to its slower migrating form, suggesting that the decline in MEK function is not likely to be attributable to the shift, with age, from naive to memory T cell predominance. Our data suggest that age-dependent declines in gene activation, including genes for key cytokines like IL-2, may be due to declines in the upstream signals that lead to activation of the MEK/ERK protein kinase cascade.


Assuntos
Envelhecimento , Complexo CD3/imunologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/imunologia , Linfócitos T/imunologia , Animais , Anticorpos/imunologia , Reagentes de Ligações Cruzadas , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno , Mitógenos/farmacologia , Fito-Hemaglutininas/farmacologia , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Tirosina Quinases/imunologia , Proteínas Quinases S6 Ribossômicas , Linfócitos T/efeitos dos fármacos
17.
Oncogene ; 32(5): 663-9, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22391558

RESUMO

The TET (ten-eleven translocation) family of α-ketoglutarate (α-KG)-dependent dioxygenases catalyzes the sequential oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine, leading to eventual DNA demethylation. The TET2 gene is a bona fide tumor suppressor frequently mutated in leukemia, and TET enzyme activity is inhibited in IDH1/2-mutated tumors by the oncometabolite 2-hydroxyglutarate, an antagonist of α-KG, linking 5mC oxidation to cancer development. We report here that the levels of 5hmC are dramatically reduced in human breast, liver, lung, pancreatic and prostate cancers when compared with the matched surrounding normal tissues. Associated with the 5hmC decrease is the substantial reduction of the expression of all three TET genes, revealing a possible mechanism for the reduced 5hmC in cancer cells. The decrease of 5hmC was also observed during tumor development in different genetically engineered mouse models. Together, our results identify 5hmC as a biomarker whose decrease is broadly and tightly associated with tumor development.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/genética , Citosina/análogos & derivados , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , 5-Metilcitosina/metabolismo , Animais , Citosina/metabolismo , Regulação para Baixo , Humanos , Hidroxilação , Camundongos , Oxigenases de Função Mista
18.
Oncogene ; 32(25): 3091-100, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22824796

RESUMO

Mutations in the genes encoding isocitrate dehydrogenase, IDH1 and IDH2, have been reported in gliomas, myeloid leukemias, chondrosarcomas and thyroid cancer. We discovered IDH1 and IDH2 mutations in 34 of 326 (10%) intrahepatic cholangiocarcinomas. Tumor with mutations in IDH1 or IDH2 had lower 5-hydroxymethylcytosine and higher 5-methylcytosine levels, as well as increased dimethylation of histone H3 lysine 79 (H3K79). Mutations in IDH1 or IDH2 were associated with longer overall survival (P=0.028) and were independently associated with a longer time to tumor recurrence after intrahepatic cholangiocarcinoma resection in multivariate analysis (P=0.021). IDH1 and IDH2 mutations were significantly associated with increased levels of p53 in intrahepatic cholangiocarcinomas, but no mutations in the p53 gene were found, suggesting that mutations in IDH1 and IDH2 may cause a stress that leads to p53 activation. We identified 2309 genes that were significantly hypermethylated in 19 cholangiocarcinomas with mutations in IDH1 or IDH2, compared with cholangiocarcinomas without these mutations. Hypermethylated CpG sites were significantly enriched in CpG shores and upstream of transcription start sites, suggesting a global regulation of transcriptional potential. Half of the hypermethylated genes overlapped with DNA hypermethylation in IDH1-mutant gliobastomas, suggesting the existence of a common set of genes whose expression may be affected by mutations in IDH1 or IDH2 in different types of tumors.


Assuntos
Colangiocarcinoma/genética , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Neoplasias Hepáticas/genética , Sequência de Bases , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Colangiocarcinoma/metabolismo , Ilhas de CpG , Metilação de DNA , Glioblastoma/metabolismo , Histonas/genética , Humanos , Neoplasias Hepáticas/metabolismo , Mutação , Recidiva Local de Neoplasia/genética , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/metabolismo
19.
Cell Death Differ ; 18(1): 133-44, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20616807

RESUMO

Tuberous sclerosis complex (TSC)1 and TSC2 are tumor suppressors that inhibit cell growth and mutation of either gene causes benign tumors in multiple tissues. The TSC1 and TSC2 gene products form a functional complex that has GTPase-activating protein (GAP) activity toward Ras homolog enriched in brain (Rheb) to inhibit mammalian target of rapamycin complex 1 (mTORC1), which is constitutively activated in TSC mutant tumors. We found that cells with mutation in either TSC1 or TSC2 are hypersensitive to endoplasmic reticulum (ER) stress and undergo apoptosis. Although the TSC mutant cells show elevated eIF2α phosphorylation, an early ER stress response marker, at both basal and induced conditions, induction of other ER stress response markers, including ATF4, ATF6 and C/EBP homologous protein (CHOP), is severely compromised. The defects in ER stress response are restored by raptor knockdown but not by rapamycin treatment in the TSC mutant cells, indicating that a rapamycin-insensitive mTORC function is responsible for the defects in ER stress response. Consistently, activation of Rheb sensitizes cells to ER stress. Our data show an important role of TSC1/TSC2 and Rheb in unfolded protein response and cell survival. We speculate that an important physiological function of the TSC1/2 tumor suppressors is to protect cells from harmful conditions. These observations indicate a potential therapeutic application of using ER stress agents to selectively kill TSC1 or TSC2 mutant cells for TSC treatment.


Assuntos
Apoptose , Retículo Endoplasmático/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Leupeptinas/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Complexos Multiproteicos , Mutação , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Fosforilação , Proteínas/metabolismo , Proteínas/fisiologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-22096030

RESUMO

Glycolysis is a catabolic process of glucose hydrolysis needed for energy and biosynthetic intermediates, whereas gluconeogenesis is a glucose production process important for maintaining blood glucose levels during starvation. Although they share many enzymes, these two processes are not simply the reverse of each other and are instead reciprocally regulated. Two key enzymes that regulate irreversible steps in these two processes are pyruvate kinase (PK) and phosphoenolpyruvate carboxy kinase (PEPCK), which catalyze the last and first step of glycolysis and gluconeogenesis, respectively, and are both regulated by lysine acetylation. Acetylation at Lys305 of the PKM (muscle form of PK) decreases its activity and also targets it for chaperone-mediated autophagy and subsequent lysosome degradation. Acetylation of PEPCK, on the other hand, targets it for ubiquitylation by the HECT E3 ligase, UBR5/EDD1, and subsequent proteasomal degradation. These studies established a model in which acetylation regulates metabolic enzymes via different mechanisms and also revealed cross talk between acetylation and ubiquitination. Given that most metabolic enzymes are acetylated, we propose that acetylation is a major posttranslational modifier that regulates cellular metabolism.


Assuntos
Gluconeogênese , Glicólise , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Piruvato Quinase/metabolismo , Acetilação , Animais , Autofagia , Humanos , Piruvato Quinase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA