Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(45): e2301888, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37467296

RESUMO

The vigorous nanomedicine offers significant possibilities for effective therapeutics of various diseases, and nanovesicles (NVs) represented by artificial liposomes and natural exosomes and cytomembranes especially show great potential. However, their complex interactions with cells, particularly the heterogeneous extracellular adsorptions, are difficult to analyze spatiotemporally due to the transient dynamics. In this study, by single NVs tracking, the extracellular NVs adsorptions are directly observed and their heterogeneous characteristics are revealed. Briefly, plenty of NVs adsorbed on HCT116 cells are tracked and classified, and it is discovered that they exhibit various diffusion properties from different extracellular regions: stable adsorptions on the rear surface and restricted adsorptions on the front protrusion. After the hydrolysis of hyaluronic acid in the extracellular matrix by hyaluronidase, the restricted adsorptions are further weakened and manifested as dissociative adsorptions, which demonstrated reduced total NVs adsorptions from a single-cell and single-particle perspective. Compared with traditional static analysis, the spatiotemporal tracking and heterogeneous results not only reveal the extracellular NVs-cell interactions but also inspire a wide variety of nanomedicine and their nano-investigations.


Assuntos
Exossomos , Vesículas Extracelulares , Adsorção
2.
Small ; 16(15): e1902838, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31559675

RESUMO

Vascular systems are responsible for various physiological and pathological processes related to all organs in vivo, and the survival of engineered tissues for enough nutrient supply in vitro. Thus, biomimetic vascularization is highly needed for constructing both a biomimetic organ model and a reliable engineered tissue. However, many challenges remain in constructing vascularized tissues, requiring the combination of suitable biomaterials and engineering techniques. In this review, the advantages of hydrogels on building engineered vascularized tissues are discussed and recent engineering techniques for building perfusable microchannels in hydrogels are summarized, including micromolding, 3D printing, and microfluidic spinning. Furthermore, the applications of these perfusable hydrogels in manufacturing organ-on-a-chip devices and transplantable engineered tissues are highlighted. Finally, current challenges in recapitulating the complexity of native vascular systems are discussed and future development of vascularized tissues is prospected.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Engenharia Tecidual , Microfluídica , Impressão Tridimensional
3.
Adv Mater ; 35(46): e2211915, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36920232

RESUMO

Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed-mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.

4.
Chem Commun (Camb) ; 59(12): 1617-1620, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36661262

RESUMO

A novel probe was synthesized with a turn-on NIR fluorescent (NIRF)/photoacoustic (PA) response to NADPH, which was successfully applied in both monitoring intracellular NADPH and dual-modal imaging of tumor-bearing mice. It exhibits good potential in studying and understanding the tumor energy metabolism and treatment process related to NADPH.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Camundongos , Animais , Corantes Fluorescentes , NADP , Análise Espectral , Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA