Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35524, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170328

RESUMO

Background: Circulating Tumor Cells (CTCs) represent a small, heterogeneous population that comprise the minority of cells able to develop metastasis. To trap and characterize CTCs with metastatic attitude, a CXCL12-loaded hyaluronic-gel (CLG) was developed. CXCR4+cells with invasive capability would infiltrate CLG. Methods: Human colon, renal, lung and ovarian cancer cells (HT29, A498, H460 and OVCAR8 respectively) were seeded on 150 µl Empty Gels (EG) or 300 ng/ml CXCL12 loaded gel (CLG) and allowed to infiltrate for 16 h. Gels were then digested and fixed with 2 % FA-HAse for human cancer cell enumeration or digested with HAse and cancer cells recovered. CLG-recovered cells migrated toward CXCL12 and were tested for colonies/spheres formation. Moreover, CXCR4, E-Cadherin and Vimentin expression was assessed through flow cytometry and RT-PCR. The clinical trial "TRAP4MET" recruited 48 metastatic/advanced cancer patients (8 OC, 8 LC, 8 GBM, 8 EC, 8 RCC and 8 EC). 10 cc whole blood were devoted to PBMCs extraction (7 cc) and ScreenCell™ filters (3 cc) CTCs evaluation. Ficoll-isolated patient's PBMCs were seeded over CLG and allowed to infiltrate for 16 h; gels were digested and fixed with 2 % FA-HAse, cells stained and DAPI+/CD45-/pan-CK + cells enumerated as CTCs. Results: Human cancer cells infiltrate CLG more efficiently than EG (CLG/EG ratio 1.25 for HT29/1.58 for A498/1.71 for H460 and 2.83 for OVCAR8). CLG-recovered HT29 cells display hybrid-mesenchymal features [low E-cadherin (40 %) and high vimentin (235 %) as compared to HT29], CXCR4 two-fold higher than HT29, efficiently migrate toward CXCL12 (two-fold higher than HT29) and developed higher number of colonies (171 ± 21 for HT29-CLG vs 131 ± 8 colonies for HT29)/larger spheres (spheroid area: 26561 ± 6142 µm2 for HT29-CLG vs 20297 ± 7238 for HT29). In TRAP4MET clinical trial, CLG-CTCs were isolated in 8/8 patients with OC, 6/8 with LC, 6/8 with CRC, 8/8 with EC, 8/8 with RCC cancer and 5/8 with GBM. Interestingly, in OC, LC and GBM, CLG isolated higher number of CTCs as compared to the conventional ScreenCell™ (CLG/SC ratio = 1.88 for OC, 2.47 for LC and 11.89 for GBM). Bland and Altman blot analysis and Passing and Bablok regression analysis showed concordance between the methodological approaches but indicate that SC and CLG are not superimposable suggesting that the two systems select cells with different features. Conclusion: CLG might represent a new and easy tool to isolate invasive CTCs in multiple cancers such as OC, LC and GBM at today orphan of reliable methods to consistently detect CTCs.

2.
Clin Cancer Res ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167621

RESUMO

PURPOSE: To identify predictive factors of nivolumab sensitivity, peripheral blood NKs and Tregs were evaluated in patients with metastatic renal cell carcinoma (mRCC) enrolled in the REVOLUTION trial. EXPERIMENTAL DESIGN: 57 mRCCs being treated with nivolumab, as at least second-line of therapy (REV), and 62 healthy donors (HDs) were longitudinally evaluated (0-1-3-6-12 months) for peripheral NKs and Tregs, phenotype and function. Multivariable logistic regression were conducted to identify the independent predictors. The .632+ internal cross-validation was used to avoid overfitting. The best cut-off value based on three-months clinical-response was applied to progression-free survival (PFS) and overall survival (OS). Kaplan-Meier-curves for PFS and OS were produced. RESULTS: At pre-treatment, mRCCs displayed high frequency of NKp46+NKs, NKp30+NKs, KIR2DL1+NKs, KIR2DL2/DL3+NKs, and PD-1+NKs with reduced NK degranulation; as well as high frequency of Tregs, PD-1+Tregs, Helios+Tregs and ENTPD-1+Tregs. Responder patients (R), identified as a clinical response after three-months of treatment, presented at pre-treatment significantly low CD3+, high KIR2DL2/DL3+NKs, high PD-1+Tregs and high Helios+Tregs. Upon multivariate analysis, only KIR2DL2/DL3NKs and Helios+Tregs held as independent predictors of nivolumab responsiveness. The KIR2DL2/DL3+NKs >35.3% identified patients with longer OS while the Helios+Tregs >34.3% displayed significantly longer PFS. After 1-month of nivolumab, R patients showed low CD3+, high NKs, KIR2DL2/DL3+NKs and ICOS+Tregs. Among these subpopulations, CD3+ and KIR2DL2/DL3+NKs held as independent predictors of nivolumab efficacy. Low CD3+ (≤71%) significantly associated with longer PFS while high KIR2DL2/DL3+NKs (>23.3%) associated with both PFS and OS. CONCLUSIONS: Pre-treatment evaluation of Helios+Tregs/KIR2DL2/DL3+NKs and one-month post-treatment CD3+/ KIR2DL2/DL3+NKs will predict nivolumab response in mRCCs.

3.
Cells ; 11(21)2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36359736

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is currently the most deadly cancer. Although characterized by 5-20% of neoplastic cells in the highly fibrotic stroma, immunotherapy is not a valid option in PDAC treatment. As CXCR4-CXCL12 regulates tumor invasion and T-cell access and PD-1/PD-L1 controls immune tolerance, 76 PDACs were evaluated for CXCR4-CXCL12-CXCR7 and PD-1/PD-L1 in the epithelial and stromal component. Neoplastic CXCR4 and CXCL12 discriminated PDACs for recurrence-free survival (RFS), while CXCL12 and CXCR7 discriminated patients for cancer-specific survival (CSS). Interestingly, among patients with radical resection (R0), high tumor CXCR4 clustered patients with worse RFS, high CXCL12 identified poor prognostic patients for both RFS and CSS, while stromal lymphocytic-monocytic PD-L1 associated with improved RFS and CSS. PD-1 was only sporadically expressed (<1%) in focal lymphocyte infiltrate and does not impact prognosis. In multivariate analysis, tumoral CXCL12, perineural invasion, and AJCC lymph node status were independent prognostic factors for RFS; tumoral CXCL12, AJCC Stage, and vascular invasion were independent prognostic factors for CSS. CXCL12's poor prognostic meaning was confirmed in an additional perspective-independent 13 fine-needle aspiration cytology advanced stage-PDACs. Thus, CXCR4-CXCL12 evaluation in PDAC identifies prognostic categories and could orient therapeutic approaches.


Assuntos
Carcinoma Ductal Pancreático , Quimiocina CXCL12 , Neoplasias Pancreáticas , Receptores CXCR , Humanos , Antígeno B7-H1 , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Prognóstico , Receptor de Morte Celular Programada 1 , Receptores CXCR4 , Neoplasias Pancreáticas
4.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246475

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent and deadly tumors worldwide. The majority of CRC is resistant to anti-programmed cell death-1 (PD-1)-based cancer immunotherapy, with approximately 15% with high-microsatellite instability, high tumor mutation burden, and intratumoral lymphocytic infiltration. Programmed death-ligand 1 (PD-L1)/PD-1 signaling was described in solid tumor cells. In melanoma, liver, and thyroid cancer cells, intrinsic PD-1 signaling activates oncogenic functions, while in lung cancer cells, it has a tumor suppressor effect. Our work aimed to evaluate the effects of the anti-PD-1 nivolumab (NIVO) on CRC cells. METHODS: In vitro NIVO-treated human colon cancer cells (HT29, HCT116, and LoVo) were evaluated for cell growth, chemo/radiotherapeutic sensitivity, apoptosis, and spheroid growth. Total RNA-seq was assessed in 6-24 hours NIVO-treated human colon cancer cells HT29 and HCT116 as compared with NIVO-treated PES43 human melanoma cells. In vivo mice carrying HT29 xenograft were intraperitoneally treated with NIVO, OXA (oxaliplatin), and NIVO+OXA, and the tumors were characterized for growth, apoptosis, and pERK1/2/pP38. Forty-eight human primary colon cancers were evaluated for PD-1 expression through immunohistochemistry. RESULTS: In PD-1+ human colon cancer cells, intrinsic PD-1 signaling significantly decreased proliferation and promoted apoptosis. On the contrary, NIVO promoted proliferation, reduced apoptosis, and protected PD-1+ cells from chemo/radiotherapy. Transcriptional profile of NIVO-treated HT29 and HCT116 human colon cancer cells revealed downregulation of BATF2, DRAM1, FXYD3, IFIT3, MT-TN, and TNFRSF11A, and upregulation of CLK1, DCAF13, DNAJC2, MTHFD1L, PRPF3, PSMD7, and SCFD1; the opposite regulation was described in NIVO-treated human melanoma PES43 cells. Differentially expressed genes (DEGs) were significantly enriched for interferon pathway, innate immune, cytokine-mediated signaling pathways. In vivo, NIVO promoted HT29 tumor growth, thus reducing OXA efficacy as revealed through significant Ki-67 increase, pERK1/2 and pP38 increase, and apoptotic cell reduction. Eleven out of 48 primary human colon cancer biopsies expressed PD-1 (22.9%). PD-1 expression is significantly associated with lower pT stage. CONCLUSIONS: In PD-1+ human colon cancer cells, NIVO activates tumor survival pathways and could protect tumor cells from conventional therapies.


Assuntos
Neoplasias do Colo , Melanoma , Animais , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Humanos , Melanoma/tratamento farmacológico , Proteínas de Membrana/uso terapêutico , Camundongos , Proteínas de Neoplasias , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/uso terapêutico
5.
Front Oncol ; 11: 591386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937018

RESUMO

The chemokine receptor 4 (CXCR4) and 7 (CXCR7) are G-protein-coupled receptors (GPCRs) activated through their shared ligand CXCL12 in multiple human cancers. They play a key role in the tumor/tumor microenvironment (TME) promoting tumor progression, targeting cell proliferation and migration, while orchestrating the recruitment of immune and stromal cells within the TME. CXCL12 excludes T cells from TME through a concentration gradient that inhibits immunoactive cells access and promotes tumor vascularization. Thus, dual CXCR4/CXCR7 inhibition will target different cancer components. CXCR4/CXCR7 antagonism should prevent the development of metastases by interfering with tumor cell growth, migration and chemotaxis and favoring the frequency of T cells in TME. Herein, we discuss the current understanding on the role of CXCL12/CXCR4/CXCR7 cross-talk in tumor progression and immune cells recruitment providing support for a combined CXCR4/CXCR7 targeting therapy. In addition, we consider emerging approaches that coordinately target both immune checkpoints and CXCL12/CXCR4/CXCR7 axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA