Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
BMC Genomics ; 23(1): 776, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443651

RESUMO

BACKGROUND: Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions. Reference sequences of the nuclear and chloroplast genome of A. alba are available, however, the mitogenome has not yet been assembled and studied. RESULTS: Here, we used paired-end Illumina short reads generated from a single haploid megagametophyte in combination with PacBio long reads from high molecular weight DNA of needles to assemble the first mitogenome sequence of A. alba. Assembly and scaffolding resulted in 11 mitogenome scaffolds, with the largest scaffold being 0.25 Mbp long. Two of the scaffolds displayed a potential circular structure supported by PCR. The total size of the A. alba mitogenome was estimated at 1.43 Mbp, similar to the size (1.33 Mbp) of a draft assembly of the Abies firma mitogenome. In total, 53 distinct genes of known function were annotated in the A. alba mitogenome, comprising 41 protein-coding genes, nine tRNA, and three rRNA genes. The proportion of highly repetitive elements (REs) was 0.168. The mitogenome seems to have a complex and dynamic structure featured by high combinatorial variation, which was specifically confirmed by PCR for the contig with the highest mapping coverage. Comparative analysis of all sequenced mitogenomes of gymnosperms revealed a moderate, but significant positive correlation between mitogenome size and proportion of REs. CONCLUSIONS: The A. alba mitogenome provides a basis for new comparative studies and will allow to answer important structural, phylogenetic and other evolutionary questions. Future long-read sequencing with higher coverage of the A. alba mitogenome will be the key to further resolve its physical structure. The observed positive correlation between mitogenome size and proportion of REs will be further validated once available mitogenomes of gymnosperms would become more numerous. To test whether a higher proportion of REs in a mitogenome leads to an increased recombination and higher structural complexity and variability is a prospective avenue for future research.


Assuntos
Abies , Genoma de Cloroplastos , Genoma Mitocondrial , Traqueófitas , Genoma Mitocondrial/genética , Filogenia , Estudos Prospectivos
2.
New Phytol ; 235(2): 391-401, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35306671

RESUMO

The rapid development of ancient DNA analysis in the last decades has induced a paradigm shift in ecology and evolution. Driven by a combination of breakthroughs in DNA isolation techniques, high-throughput sequencing, and bioinformatics, ancient genome-scale data for a rapidly growing variety of taxa are now available, allowing researchers to directly observe demographic and evolutionary processes over time. However, the vast majority of paleogenomic studies still focus on human or animal remains. In this article, we make the case for a vast untapped resource of ancient plant material that is ideally suited for paleogenomic analyses: plant remains, such as needles, leaves, wood, seeds, or fruits, that are deposited in natural archives, such as lake sediments, permafrost, or even ice caves. Such plant remains are commonly found in large numbers and in stratigraphic sequence through time and have so far been used primarily to reconstruct past local species presences and abundances. However, they are also unique repositories of genetic information with the potential to revolutionize the fields of ecology and evolution by directly studying microevolutionary processes over time. Here, we give an overview of the current state-of-the-art, address important challenges, and highlight new research avenues to inspire future research.


Assuntos
DNA Antigo , Pergelissolo , Animais , DNA de Plantas/genética , Lagos , Plantas/genética
3.
Glob Chang Biol ; 27(6): 1181-1195, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33345407

RESUMO

The ongoing increase in global temperature affects biodiversity, especially in mountain regions where climate change is exacerbated. As sessile, long-lived organisms, trees are especially challenged in terms of adapting to rapid climate change. Here, we show that low rates of allele frequency shifts in Swiss stone pine (Pinus cembra) occurring near the treeline result in high genomic vulnerability to future climate warming, presumably due to the species' long generation time. Using exome sequencing data from adult and juvenile cohorts in the Swiss Alps, we found an average rate of allele frequency shift of 1.23 × 10-2 /generation (i.e. 40 years) at presumably neutral loci, with similar rates for putatively adaptive loci associated with temperature (0.96 × 10-2 /generation) and precipitation (0.91 × 10-2 /generation). These recent shifts were corroborated by forward-in-time simulations at neutral and adaptive loci. Additionally, in juvenile trees at the colonisation front we detected alleles putatively beneficial under a future warmer and drier climate. Notably, the observed past rate of allele frequency shift in temperature-associated loci was decidedly lower than the estimated average rate of 6.29 × 10-2 /generation needed to match a moderate future climate scenario (RCP4.5). Our findings suggest that species with long generation times may have difficulty keeping up with the rapid climate change occurring in high mountain areas and thus are prone to local extinction in their current main elevation range.


Assuntos
Pinus , Árvores , Biodiversidade , Mudança Climática , Genômica , Árvores/genética
4.
Mol Ecol ; 29(22): 4350-4365, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969558

RESUMO

It has long been discussed to what extent related species develop similar genetic mechanisms to adapt to similar environments. Most studies documenting such convergence have either used different lineages within species or surveyed only a limited portion of the genome. Here, we investigated whether similar or different sets of orthologous genes were involved in genetic adaptation of natural populations of three related plant species to similar environmental gradients in the Alps. We used whole-genome pooled population sequencing to study genome-wide SNP variation in 18 natural populations of three Brassicaceae (Arabis alpina, Arabidopsis halleri, and Cardamine resedifolia) from the Swiss Alps. We first de novo assembled draft reference genomes for all three species. We then ran population and landscape genomic analyses with ~3 million SNPs per species to look for shared genomic signatures of selection and adaptation in response to similar environmental gradients acting on these species. Genes with a signature of convergent adaptation were found at significantly higher numbers than expected by chance. The most closely related species pair showed the highest relative over-representation of shared adaptation signatures. Moreover, the identified genes of convergent adaptation were enriched for nonsynonymous mutations, suggesting functional relevance of these genes, even though many of the identified candidate genes have hitherto unknown or poorly described functions based on comparison with Arabidopsis thaliana. We conclude that adaptation to heterogeneous Alpine environments in related species is partly driven by convergent evolution, but that most of the genomic signatures of adaptation remain species-specific.


Assuntos
Adaptação Fisiológica , Arabis , Brassicaceae , Cardamine , Adaptação Fisiológica/genética , Brassicaceae/genética , Genômica
5.
Mol Ecol ; 29(11): 1972-1989, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32395881

RESUMO

It is generally accepted that the spatial distribution of neutral genetic diversity within a species' native range mostly depends on effective population size, demographic history, and geographic position. However, it is unclear how genetic diversity at adaptive loci correlates with geographic peripherality or with habitat suitability within the ecological niche. Using exome-wide genomic data and distribution maps of the Alpine range, we first tested whether geographic peripherality correlates with four measures of population genetic diversity at > 17,000 SNP loci in 24 Alpine populations (480 individuals) of Swiss stone pine (Pinus cembra) from Switzerland. To distinguish between neutral and adaptive SNP sets, we used four approaches (two gene diversity estimates, FST outlier test, and environmental association analysis) that search for signatures of selection. Second, we established ecological niche models for P. cembra in the study range and investigated how habitat suitability correlates with genetic diversity at neutral and adaptive loci. All estimates of neutral genetic diversity decreased with geographic peripherality, but were uncorrelated with habitat suitability. However, heterozygosity (He ) at adaptive loci based on Tajima's D declined significantly with increasingly suitable conditions. No other diversity estimates at adaptive loci were correlated with habitat suitability. Our findings suggest that populations at the edge of a species' geographic distribution harbour limited neutral genetic diversity due to demographic properties. Moreover, we argue that populations from suitable habitats went through strong selection processes, are thus well adapted to local conditions, and therefore exhibit reduced genetic diversity at adaptive loci compared to populations at niche margins.


Assuntos
Ecossistema , Genética Populacional , Pinus , Adaptação Biológica , Variação Genética , Pinus/genética , Seleção Genética , Suíça
6.
Heredity (Edinb) ; 124(1): 77-92, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31182819

RESUMO

Heterogeneous environments, such as mountainous landscapes, create spatially varying selection pressure that potentially affects several traits simultaneously across different life stages, yet little is known about the general patterns and drivers of adaptation in such complex settings. We studied silver fir (Abies alba Mill.) populations across Switzerland and characterized its mountainous landscape using downscaled historical climate data. We sampled 387 trees from 19 populations and genotyped them at 374 single-nucleotide polymorphisms (SNPs) to estimate their demographic distances. Seedling morphology, growth and phenology traits were recorded in a common garden, and a proxy for water use efficiency was estimated for adult trees. We tested whether populations have more strongly diverged at quantitative traits than expected based on genetic drift alone in a multi-trait framework, and identified potential environmental drivers of selection. We found two main responses to selection: (i) populations from warmer and more thermally stable locations have evolved towards a taller stature, and (ii) the growth timing of populations evolved towards two extreme strategies, 'start early and grow slowly' or 'start late and grow fast', driven by precipitation seasonality. Populations following the 'start early and grow slowly' strategy had higher water use efficiency and came from inner Alpine valleys characterized by pronounced summer droughts. Our results suggest that contrasting adaptive life-history strategies exist in silver fir across different life stages (seedling to adult), and that some of the characterized populations may provide suitable seed sources for tree growth under future climatic conditions.


Assuntos
Abies/genética , Adaptação Fisiológica/genética , Clima , Genética Populacional , Abies/crescimento & desenvolvimento , Secas , Deriva Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Suíça , Árvores/genética
7.
Ann Bot ; 125(4): 663-676, 2020 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-31912148

RESUMO

BACKGROUND AND AIMS: Hybridization and introgression play an important role in the evolution and diversification of plants. To assess the degree of past and current hybridization, the level of genetic admixture in populations needs to be investigated. Ongoing hybridization and blurred species separation have made it challenging to assign European white oak taxa based on leaf morphology and/or genetic markers and to assess the level of admixture. Therefore, there is a need for powerful markers that differentiate between taxa. Here, we established a condensed set of single-nucleotide polymorphism (SNP) markers to reliably differentiate between the three most common oak species in temperate European forests (Quercus robur, Q. petraea, Q. pubescens) and to assess the degree of admixture in a large set of selected Swiss populations. METHODS: A training set of 194 presumably pure reference samples from Switzerland and Europe was used to assign 633 test individuals with two different approaches (population genetic-based/Bayesian vs. assumption-free/discriminative classifier) using 58 selected SNPs from coding regions. Admixture was calculated at the individual and population level with the Shannon diversity index based on individual assignment probabilities. KEY RESULTS: Depending on the approach, 97.5-100 % of training individuals were assigned correctly, and additional analyses showed that the established SNP set could be further reduced while maintaining its discriminatory power. The two assignment approaches showed high overlap (99 %) in assigning training individuals and slightly less overlap in test individuals (84 %). Levels of admixture varied widely among populations. Mixed stands of Q. petraea and Q. pubescens revealed much higher degrees of admixture than mixed stands of the other two taxon pairs, accentuating high levels of gene flow between these two taxa in Switzerland. CONCLUSIONS: Our set of SNPs warrants reliable taxon discrimination with great potential for further applications. We show that the three European white oak taxa have largely retained their species integrity in Switzerland despite high levels of admixture.


Assuntos
Quercus , Teorema de Bayes , Europa (Continente) , Polimorfismo de Nucleotídeo Único , Suíça
8.
Mol Ecol ; 28(6): 1550-1562, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30633406

RESUMO

Recombination and selection drive the extent of linkage disequilibrium (LD) among loci and therefore affect the reshuffling of adaptive genetic variation. However, it is poorly known to what extent the enrichment of transposable elements (TEs) in recombinationally-inert regions reflects their inefficient removal by purifying selection and whether the presence of polymorphic TEs can modify the local recombination rate. In this study, we investigate how TEs and recombination interact at fine scale along chromosomes and possibly support linked selection in natural populations. Whole-genome sequencing data of 304 individuals from nearby alpine populations of Arabis alpina were used to show that the density of polymorphic TEs is specifically correlated with local LD along chromosomes. Consistent with TEs modifying recombination, the characterization of 28 such LD blocks of up to 5.5 Mb in length revealed strong evidence of selective sweeps at a few loci through either site frequency spectrum or haplotype structure. A majority of these blocks were enriched in genes related to ecologically relevant functions such as responses to cold, salt stress or photoperiodism. In particular, the S-locus (i.e., supergene responsible for strict outcrossing) was identified in a LD block with high levels of polymorphic TEs and evidence of selection. Another such LD block was enriched in cold-responding genes and presented evidence of adaptive loci related to photoperiodism and flowering being increasingly linked by polymorphic TEs. These results are consistent with the hypothesis that TEs modify recombination landscapes and thus interact with selection in driving blocks of linked adaptive loci in natural populations.


Assuntos
Elementos de DNA Transponíveis/genética , Desequilíbrio de Ligação/genética , Recombinação Genética , Seleção Genética/genética , Cromossomos/genética , Haplótipos/genética , Humanos , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único/genética
9.
Mol Ecol ; 28(17): 3848-3856, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31392753

RESUMO

Conservation genetics is a well-established scientific field. However, limited information transfer between science and practice continues to hamper successful implementation of scientific knowledge in conservation practice and management. To mitigate this challenge, we have established a conservation genetics community, which entails an international exchange-and-skills platform related to genetic methods and approaches in conservation management. First, it allows for scientific exchange between researchers during annual conferences. Second, personal contact between conservation professionals and scientists is fostered by organising workshops and by popularising knowledge on conservation genetics methods and approaches in professional journals in national languages. Third, basic information on conservation genetics has been made accessible by publishing an easy-to-read handbook on conservation genetics for practitioners. Fourth, joint projects enabled practitioners and scientists to work closely together from the start of a project in order to establish a tight link between applied questions and scientific background. Fifth, standardised workflows simplifying the implementation of genetic tools in conservation management have been developed. By establishing common language and trust between scientists and practitioners, all these measures help conservation genetics to play a more prominent role in future conservation planning and management.


Assuntos
Conservação dos Recursos Naturais , Fenômenos Genéticos , Animais , Ecossistema , Ciência
10.
New Phytol ; 217(4): 1737-1748, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243821

RESUMO

Ancient DNA from historical and subfossil wood has a great potential to provide new insights into the history of tree populations. However, its extraction and analysis have not become routine, mainly because contamination of the wood with modern plant material can complicate the verification of genetic information. Here, we used sapwood tissue from 22 subfossil pines that were growing c. 13 000 yr bp in Zurich, Switzerland. We developed and evaluated protocols to eliminate surface contamination, and we tested ancient DNA authenticity based on plastid DNA metabarcoding and the assessment of post-mortem DNA damage. A novel approach using laser irradiation coupled with bleaching and surface removal was most efficient in eliminating contaminating DNA. DNA metabarcoding confirmed which ancient DNA samples repeatedly amplified pine DNA and were free of exogenous plant taxa. Pine DNA sequences of these samples showed a high degree of cytosine to thymine mismatches, typical of post-mortem damage. Stringent decontamination of wood surfaces combined with DNA metabarcoding and assessment of post-mortem DNA damage allowed us to authenticate ancient DNA retrieved from the oldest Late Glacial pine forest. These techniques can be applied to any subfossil wood and are likely to improve the accessibility of relict wood for genome-scale ancient DNA studies.


Assuntos
DNA de Plantas/isolamento & purificação , Florestas , Fósseis , Pinus/genética , Madeira/genética , DNA de Plantas/genética , Descontaminação , Picea/genética , Pinus/classificação , Especificidade da Espécie
11.
BMC Genomics ; 18(1): 69, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077077

RESUMO

BACKGROUND: Microsatellite markers are widely used for estimating genetic diversity within and differentiation among populations. However, it has rarely been tested whether such estimates are useful proxies for genome-wide patterns of variation and differentiation. Here, we compared microsatellite variation with genome-wide single nucleotide polymorphisms (SNPs) to assess and quantify potential marker-specific biases and derive recommendations for future studies. Overall, we genotyped 180 Arabidopsis halleri individuals from nine populations using 20 microsatellite markers. Twelve of these markers were originally developed for Arabidopsis thaliana (cross-species markers) and eight for A. halleri (species-specific markers). We further characterized 2 million SNPs across the genome with a pooled whole-genome re-sequencing approach (Pool-Seq). RESULTS: Our analyses revealed that estimates of genetic diversity and differentiation derived from cross-species and species-specific microsatellites differed substantially and that expected microsatellite heterozygosity (SSR-H e) was not significantly correlated with genome-wide SNP diversity estimates (SNP-H e and θ Watterson) in A. halleri. Instead, microsatellite allelic richness (A r) was a better proxy for genome-wide SNP diversity. Estimates of genetic differentiation among populations (F ST) based on both marker types were correlated, but microsatellite-based estimates were significantly larger than those from SNPs. Possible causes include the limited number of microsatellite markers used, marker ascertainment bias, as well as the high variance in microsatellite-derived estimates. In contrast, genome-wide SNP data provided unbiased estimates of genetic diversity independent of whether genome- or only exome-wide SNPs were used. Further, we inferred that a few thousand random SNPs are sufficient to reliably estimate genome-wide diversity and to distinguish among populations differing in genetic variation. CONCLUSIONS: We recommend that future analyses of genetic diversity within and differentiation among populations use randomly selected high-throughput sequencing-based SNP data to draw conclusions on genome-wide diversity patterns. In species comparable to A. halleri, a few thousand SNPs are sufficient to achieve this goal.


Assuntos
Arabidopsis/genética , Genômica , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único , Genoma de Planta/genética
12.
Mol Ecol ; 25(23): 5907-5924, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27759957

RESUMO

Testing how populations are locally adapted and predicting their response to their future environment is of key importance in view of climate change. Landscape genomics is a powerful approach to investigate genes and environmental factors involved in local adaptation. In a pooled amplicon sequencing approach of 94 genes in 71 populations, we tested whether >3500 single nucleotide polymorphisms (SNPs) in the three most common oak species in Switzerland (Quercus petraea, Q. pubescens, Q. robur) show an association with abiotic factors related to local topography, historical climate and soil characteristics. In the analysis including all species, the most frequently associated environmental factors were those best describing the habitats of the species. In the species-specific analyses, the most important environmental factors and associated SNPs greatly differed among species. However, we identified one SNP and seven genes that were associated with the same environmental factor across all species. We finally used regressions of allele frequencies of the most strongly associated SNPs along environmental gradients to predict the risk of nonadaptedness (RONA), which represents the average change in allele frequency at climate-associated loci theoretically required to match future climatic conditions. RONA is considerable for some populations and species (up to 48% in single populations) and strongly differs among species. Given the long generation time of oaks, some of the required allele frequency changes might not be realistic to achieve based on standing genetic variation. Hence, future adaptedness requires gene flow or planting of individuals carrying beneficial alleles from habitats currently matching future climatic conditions.


Assuntos
Adaptação Fisiológica/genética , Mudança Climática , Polimorfismo de Nucleotídeo Único , Quercus/genética , Frequência do Gene , Genes de Plantas , Genética Populacional , Suíça
13.
Mol Ecol ; 24(17): 4348-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26184487

RESUMO

Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next-generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced-representation sequencing, candidate-gene approaches, linearity of allele-environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies.


Assuntos
Meio Ambiente , Genética Populacional/métodos , Genômica/métodos , Modelos Genéticos , Adaptação Fisiológica/genética , Alelos , Frequência do Gene , Interação Gene-Ambiente , Genótipo , Modelos Lineares , Modelos Logísticos , Fenótipo , Software , Estatística como Assunto
14.
J Anim Ecol ; 84(1): 71-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25156134

RESUMO

Many animals hoard seeds for later consumption and establish seed caches that are often located at sites with specific environmental characteristics. One explanation for the selection of non-random caching locations is the avoidance of pilferage by other animals. Another possible hypothesis is that animals choose locations that hamper the perishability of stored food, allowing the consumption of unspoiled food items over long time periods. We examined seed perishability and pilferage avoidance as potential drivers for caching behaviour of spotted nutcrackers (Nucifraga caryocatactes) in the Swiss Alps where the birds are specialized on caching seeds of Swiss stone pine (Pinus cembra). We used seedling establishment as an inverse measure of seed perishability, as established seedlings cannot longer be consumed by nutcrackers. We recorded the environmental conditions (i.e. canopy openness and soil moisture) of seed caching, seedling establishment and pilferage sites. Our results show that sites of seed caching and seedling establishment had opposed microenvironmental conditions. Canopy openness and soil moisture were negatively related to seed caching but positively related to seedling establishment, i.e. nutcrackers cached seeds preferentially at sites where seed perishability was low. We found no effects of environmental factors on cache pilferage, i.e. neither canopy openness nor soil moisture had significant effects on pilferage rates. We thus could not relate caching behaviour to pilferage avoidance. Our study highlights the importance of seed perishability as a mechanism for seed-caching behaviour, which should be considered in future studies. Our findings could have important implications for the regeneration of plants whose seeds are dispersed by seed-caching animals, as the potential of seedlings to establish may strongly decrease if animals cache seeds at sites that favour seed perishability rather than seedling establishment.


Assuntos
Comportamento Alimentar , Sementes/fisiologia , Aves Canoras/fisiologia , Animais , Pinus/fisiologia , Suíça
15.
Evol Appl ; 17(7): e13737, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948540

RESUMO

Landscape genomic analyses associating genetic variation with environmental variables are powerful tools for studying molecular signatures of species' local adaptation and for detecting candidate genes under selection. The development of landscape genomics over the past decade has been spurred by improvements in resolutions of genomic and environmental datasets, allegedly increasing the power to identify putative genes underlying local adaptation in non-model organisms. Although these associations have been successfully applied to numerous species across a diverse array of taxa, the spatial scale of environmental predictor variables has been largely overlooked, potentially limiting conclusions to be reached with these methods. To address this knowledge gap, we systematically evaluated performances of genotype-environment association (GEA) models using predictor variables at multiple spatial resolutions. Specifically, we used multivariate redundancy analyses to associate whole-genome sequence data from the plant Arabis alpina L. collected across four neighboring valleys in the western Swiss Alps, with very high-resolution topographic variables derived from digital elevation models of grain sizes between 0.5 m and 16 m. These comparisons highlight the sensitivity of landscape genomic models to spatial resolution, where the optimal grain sizes were specific to variable type, terrain characteristics, and study extent. To assist in selecting variables at appropriate spatial resolutions, we demonstrate a practical approach to produce, select, and integrate multiscale variables into GEA models. After generalizing fine-grained variables to multiple spatial resolutions, a forward selection procedure is applied to retain only the most relevant variables for a particular context. Depending on the spatial resolution, the relevance for topographic variables in GEA studies calls for integrating multiple spatial scales into landscape genomic models. By carefully considering spatial resolutions, candidate genes under selection by a more realistic range of pressures can be detected for downstream analyses, with important applied implications for experimental research and conservation management of natural populations.

16.
Nat Ecol Evol ; 8(2): 267-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225425

RESUMO

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Ecossistema , Variação Genética
17.
Mol Ecol ; 22(6): 1626-39, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23398479

RESUMO

Local adaptation is one possible response of organisms to survive in a changing environment. However, the genetic basis of adaptation is not well understood, especially in nonmodel species. To infer recurrent patterns of local adaptation, we investigated whether the same putative adaptive loci reoccur in related species. We performed genome scans using amplified fragment length polymorphism (AFLP) markers on populations of five Alpine Brassicaceae species sampled across a wide range of environmental conditions. To identify markers potentially under directional selection, we performed outlier and environmental association analyses using a set of topo-climatic variables available as GIS layers. Several AFLP loci showed signatures of adaptation, of which one, found in Cardamine resedifolia (Cre_P1_212.5), was associated with precipitation. We sequence-characterized this candidate locus and genotyped single nucleotide polymorphisms (SNPs) found within this locus for all species. Testing for environmental associations of SNPs revealed the same association of this locus in Arabis alpina but not in other study species. Cumulative statistical evidence indicates that locus Cre_P1_212.5 is environmentally relevant or is linked to a gene under selection in our study range. Furthermore, the locus shows an association to the same potentially selective factor in at least one other related species. These findings help to identify trends in plant adaptation in Alpine ecosystems in response to particular environmental parameters.


Assuntos
Adaptação Fisiológica/genética , Brassicaceae/genética , Clima , Loci Gênicos , Seleção Genética , Sequência de Aminoácidos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Plantas/genética , Genótipo , Modelos Lineares , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Análise de Sequência de DNA
18.
Mol Ecol ; 22(13): 3433-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23967453

RESUMO

Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon-dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci et al. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta-barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (Jørgensen et al. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground.


Assuntos
Sedimentos Geológicos/análise , Lagos/análise , Plantas/genética , Pólen/química
19.
Mol Ecol ; 22(22): 5594-607, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102711

RESUMO

Natural genetic variation is essential for the adaptation of organisms to their local environment and to changing environmental conditions. Here, we examine genomewide patterns of nucleotide variation in natural populations of the outcrossing herb Arabidopsis halleri and associations with climatic variation among populations in the Alps. Using a pooled population sequencing (Pool-Seq) approach, we discovered more than two million SNPs in five natural populations and identified highly differentiated genomic regions and SNPs using FST -based analyses. We tested only the most strongly differentiated SNPs for associations with a nonredundant set of environmental factors using partial Mantel tests to identify topo-climatic factors that may underlie the observed footprints of selection. Possible functions of genes showing signatures of selection were identified by Gene Ontology analysis. We found 175 genes to be highly associated with one or more of the five tested topo-climatic factors. Of these, 23.4% had unknown functions. Genetic variation in four candidate genes was strongly associated with site water balance and solar radiation, and functional annotations were congruent with these environmental factors. Our results provide a genomewide perspective on the distribution of adaptive genetic variation in natural plant populations from a highly diverse and heterogeneous alpine environment.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Clima , Genética Populacional , Seleção Genética , DNA de Plantas/genética , Ecossistema , Ontologia Genética , Genes de Plantas , Genômica/métodos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Suíça
20.
Mol Ecol ; 22(12): 3198-207, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24433571

RESUMO

Understanding the interactions of co-occurring species within and across trophic levels provides key information needed for understanding the ecological and evolutionary processes that underlie biological diversity. As genetics has only recently been integrated into the study of community-level interactions, the time is right for a critical evaluation of potential new, gene-based approaches to studying communities. Next-generation molecular techniques, used in parallel with field-based observations and manipulative experiments across spatio-temporal gradients, are key to expanding our understanding of community-level processes. Here, we introduce a variety of '-omics' tools, with recent studies of plant-insect herbivores and of ectomycorrhizal systems providing detailed examples of how next-generation approaches can revolutionize our understanding of interspecific interactions. We suggest ways that novel technologies may convert community genetics from a field that relies on correlative inference to one that reveals causal mechanisms of genetic co-variation and adaptations within communities.


Assuntos
Biota , Insetos/genética , Micorrizas/genética , Plantas/genética , Animais , Ecologia/métodos , Perfilação da Expressão Gênica , Genômica , Metabolômica , Plantas/microbiologia , Proteômica , Locos de Características Quantitativas , Análise Espaço-Temporal , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA