Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Genomics ; 18(1): 103, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285482

RESUMO

BACKGROUND: Deletion or duplication in the DMD gene is one of the most common causes of Duchenne and Becker muscular dystrophy (DMD/BMD). However, the pathogenicity of complex rearrangements involving DMD, especially segmental duplications with unknown breakpoints, is not well understood. This study aimed to evaluate the structure, pattern, and potential impact of rearrangements involving DMD duplication. METHODS: Two families with DMD segmental duplications exhibiting phenotypical differences were recruited. Optical genome mapping (OGM) was used to explore the cryptic pattern of the rearrangements. Breakpoints were validated using long-range polymerase chain reaction combined with next-generation sequencing and Sanger sequencing. RESULTS: A multi-copy duplication involving exons 64-79 of DMD was identified in Family A without obvious clinical symptoms. Family B exhibited typical DMD neuromuscular manifestations and presented a duplication involving exons 10-13 of DMD. The rearrangement in Family A involved complex in-cis tandem repeats shown by OGM but retained a complete copy (reading frame) of DMD inferred from breakpoint validation. A reversed insertion with a segmental repeat was identified in Family B by OGM, which was predicted to disrupt the normal structure and reading frame of DMD after confirming the breakpoints. CONCLUSIONS: Validating breakpoint and rearrangement pattern is crucial for the functional annotation and pathogenic classification of genomic structural variations. OGM provides valuable insights into etiological analysis of DMD/BMD and enhances our understanding for cryptic effects of complex rearrangements.


Assuntos
Distrofina , Éxons , Distrofia Muscular de Duchenne , Linhagem , Fenótipo , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofina/genética , Masculino , Éxons/genética , Feminino , Mapeamento Cromossômico , Rearranjo Gênico/genética , Criança , Duplicações Segmentares Genômicas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Duplicação Gênica/genética , Adolescente
2.
Genet Med ; 23(4): 669-678, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33402738

RESUMO

PURPOSE: To examine the overall genomic copy-number variant (CNV) landscape of Chinese pediatric patients with developmental disorders. METHODS: De-identified chromosomal microarray (CMA) data from 10,026 pediatric patients with developmental disorders were collected for re-evaluating the pathogenic CNV (pCNV) yields of different medical conditions and for comparing the frequency and phenotypic variability of genomic disorders between the Chinese and Western patient populations. RESULTS: The overall yield of pCNVs in the Chinese pediatric patient cohort was 21.37%, with variable yields for different disorders. Yields of pCNVs were positively associated with phenotypic complexity and intellectual disability/developmental delay (ID/DD) comorbidity for most disorders. The genomic burden and pCNV yield in neurodevelopmental disorders supported a female protective effect. However, the stratification analysis revealed that it was seen only in nonsyndromic ID/DD, not in nonsyndromic autism spectrum disorders or seizure. Furthermore, 15 known genomic disorders showed significantly different frequencies in Chinese and Western patient cohorts, and profiles of referred clinical features for 15 known genomic disorders were also significantly different in the two cohorts. CONCLUSION: We defined the pCNV yields and profiles of the Chinese pediatric patients with different medical conditions and uncovered differences in the frequency and phenotypic diversity of genomic disorders between Chinese and Western patients.


Assuntos
Deficiências do Desenvolvimento , Deficiência Intelectual , Criança , China/epidemiologia , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(4): 306-309, 2019 Apr 10.
Artigo em Zh | MEDLINE | ID: mdl-30950013

RESUMO

OBJECTIVE: To explore the genetic basis and pregnancy outcome of fetuses with urinary system anomalies. METHODS: Ultrasonographic features, genetic testing and pregnancy outcomes of 337 fetuses with urinary system anomalies identified by prenatal ultrasonograhy were collected for analysis. RESULTS: Ultrasonographic features of the fetuses were mainly characterized by hydronephrosis or hydronephrosis, polycystic kidney disease, and renal dysplasia. Thirty four fetuses (10.1%) were found to harbor a genetic defect, including 14 numerical chromosomal disorders, 10 structural chromosomal aberrations, and 10 pathogenic copy number variations (CNVs). In 31 cases, the parents elected induced labor. For the 303 fetuses with negative findings, 142 were born by spontaneous delivery or Caesarean section, 48 cases underwent induced labor, 1 case had miscarriage, and the remaining 112 cases had unknown or missed pregnancy outcomes. CONCLUSION: Hydronephrosis or hydronephrosis, polycystic kidney disease, and renal dysplasia are the most common findings among fetuses with urinary system anomalies. Approximately 10.1% of such fetuses are positive by genetic testing.


Assuntos
Variações do Número de Cópias de DNA , Resultado da Gravidez , Cesárea , Aberrações Cromossômicas , Feminino , Feto , Testes Genéticos , Humanos , Gravidez , Diagnóstico Pré-Natal , Ultrassonografia Pré-Natal
4.
BMC Med Genomics ; 17(1): 135, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773466

RESUMO

BACKGROUND: Thoracic aortic aneurysm/dissection (TAAD) and patent ductus arteriosus (PDA) are serious autosomal-dominant diseases affecting the cardiovascular system. They are mainly caused by variants in the MYH11 gene, which encodes the heavy chain of myosin 11. The aim of this study was to evaluate the genotype-phenotype correlation of MYH11 from a distinctive perspective based on a pair of monozygotic twins. METHODS: The detailed phenotypic characteristics of the monozygotic twins from the early fetal stage to the infancy stage were traced and compared with each other and with those of previously documented cases. Whole-exome and Sanger sequencing techniques were used to identify and validate the candidate variants, facilitating the analysis of the genotype-phenotype correlation of MYH11. RESULTS: The monozygotic twins were premature and presented with PDA, pulmonary hypoplasia, and pulmonary hypertension. The proband developed heart and brain abnormalities during the fetal stage and died at 18 days after birth, whereas his sibling was discharged after being cured and developed normally post follow-up. A novel variant c.766 A > G p. (Ile256Val) in MYH11 (NM_002474.2) was identified in the monozygotic twins and classified as a likely pathogenic variant according to the American College of Medical Genetics/Association for Molecular Pathology guidelines. Reviewing the reported cases (n = 102) showed that the penetrance of MYH11 was 82.35%, and the most common feature was TAAD (41.18%), followed by PDA (22.55%), compound TAAD and PDA (9.80%), and other vascular abnormalities (8.82%). The constituent ratios of null variants among the cases with TAAD (8.60%), PDA (43.8%), or compound TAAD and PDA (28.6%) were significantly different (P = 0.01). Further pairwise comparison of the ratios among these groups showed that there were significant differences between the TAAD and PDA groups (P = 0.006). CONCLUSION: This study expands the mutational spectrum of MYH11 and provides new insights into the genotype-phenotype correlation of MYH11 based on the monozygotic twins with variable clinical features and outcomes, indicating that cryptic modifiers and complex mechanisms beside the genetic variants may be involved in the condition.


Assuntos
Estudos de Associação Genética , Cadeias Pesadas de Miosina , Gêmeos Monozigóticos , Humanos , Gêmeos Monozigóticos/genética , Cadeias Pesadas de Miosina/genética , Masculino , Recém-Nascido , Fenótipo , Miosinas Cardíacas/genética , Aneurisma da Aorta Torácica/genética , Permeabilidade do Canal Arterial/genética , Feminino , Mutação , Dissecção Aórtica/genética
5.
J Thromb Haemost ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39260745

RESUMO

BACKGROUND: Targeted long-read sequencing (LRS) is expected to comprehensively analyze diverse complex variants in hemophilia A (HA) and hemophilia B (HB) caused by the F8 and F9 genes, respectively. However, its clinical applicability still requires extensive validation. OBJECTIVES: To evaluate the clinical applicability of targeted LRS-based analysis compared with routine polymerase chain reaction (PCR)-based methods. METHODS: Gene variants of retrieved subjects were retrospectively and prospectively analyzed. Whole-genome sequencing was performed to further analyze undiagnosed cases. Breakpoints of novel genomic rearrangements were mapped and validated using long-distance PCR and long-range PCR combined with sequencing. RESULTS: In total, 122 subjects were retrieved. In retrospective analysis of the 90 HA cases, HA-LRS assay showed consistent results in 84 cases compared with routine methods and characterized 6 large deletions with their exact breakpoints confirmed by further validation in 6 cases (routine methods only presented failure in amplifying the involved exons). In prospective analysis of the 21 HA subjects, 20 variants of F8 were identified in 20 cases. For the remaining HA patient, no duplication/deletion or single-nucleotide variant (SNV)/insertion and deletion (InDel) was found, but a potential recombination involving exons 14 and 21 of F8 was observed by LRS. Whole-genome sequencing analysis and further verification defined a 30 478 base pairs (bp) tandem repeat involving exons 14 to 21 of F8. Among the 11 HB patients, HB-LRS analysis detected 11 SNVs/InDels in F9, consistent with routine methods. CONCLUSION: Targeted LRS-based analysis was efficient and comprehensive in identifying SNVs/InDels and genomic rearrangements of hemophilia genes, especially when we first expanded the panel to include F9. However, further investigation for complex gross rearrangement is still essential.

6.
Front Pediatr ; 11: 1199609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484768

RESUMO

Thalassemia is an inherited blood disorder imposing a significant social and economic burden. Comprehensive screening strategies are essential for the prevention and management of this disease. Third-generation sequencing (TGS), a breakthrough technology, has shown great potential for screening and diagnostic applications in various diseases, while its application in thalassemia detection is still in its infancy. This review aims to understand the latest and most widespread uses, advantages of TGS technologies, as well as the challenges and solutions associated with their incorporation into routine screening and diagnosis of thalassemia. Overall, TGS has exhibited higher rates of positive detection and diagnostic accuracy compared to conventional methods and next-generation sequencing technologies, indicating that TGS will be a feasible option for clinical laboratories conducting in-house thalassemia testing. The implementation of TGS technology in thalassemia diagnosis will facilitate the development of effective prevention and management strategies, thereby reducing the burden of this disease on individuals and society.

7.
Front Genet ; 14: 1246712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174045

RESUMO

Vascular Ehlers-Danlos syndrome (vEDS), the most severe type of Ehlers-Danlos syndrome, is caused by an autosomal-dominant defect in the COL3A1 gene. In this report, we describe the clinical history, specific phenotype, and genetic diagnosis of a man who died of vEDS. The precise diagnosis of this case using whole-exome sequencing provided solid evidence for the cause of death, demonstrating the practical value of genetic counseling and analysis. Early diagnosis for the proband's son, who was also affected by vEDS, revealed initial complications of vEDS in early childhood, which have rarely been reported. We also reviewed the literature on COL3A1 missense mutations and related phenotypes. We identified an association between digestion tract events and non-glycine missense variants, which disproves a previous hypothesis regarding the genotype-phenotype correlation of vEDS. Our results demonstrate the necessity of offering comprehensive genetic testing for every patient suspected of having vEDS.

8.
Front Genet ; 13: 1056127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506332

RESUMO

Cornelia de Lange syndrome (CdLS) is an autosomal dominant or X-linked genetic disease with significant genetic heterogeneity. Variants of the NIPBL gene are responsible for CdLS in 60% of patients. Herein, we report the case of a patient with CdLS showing distinctive facial features, microcephaly, developmental delay, and growth retardation. Whole exome sequencing was performed for the patient, and a novel de novo heterozygous synonymous variant was identified in the deep region of exon 40 in the NIPBL gene (NM_133433.4: c. 6819G > T, p. Gly2273 = ). The clinical significance of the variant was uncertain according to the ACMG/AMP guidelines; however, based on in silico analysis, it was predicted to alter mRNA splicing. To validate the prediction, a reverse transcriptase-polymerase chain reaction was conducted. The variant activated a cryptic splice donor, generating a short transcript of NIPBL. A loss of 137 bp at the 3' end of NIPBL exon 40 was detected, which potentially altered the open reading frame by inserting multiple premature termination codons. Quantitative real-time PCR analysis showed that the ratio of the transcription level of the full-length transcript to that of the altered short transcript in the patient was 5:1, instead of 1:1. These findings may explain the relatively mild phenotype of the patient, regardless of the loss of function of the truncated protein due to a frameshift in the mRNA. To the best of our knowledge, this study is the first to report a synonymous variant in the deep exon regions of the NIPBL gene responsible for CdLS. The identified variant expands the mutational spectrum of the NIPBL gene. Furthermore, synonymous variations may be pathogenic, which should not be ignored in the clinical and genetic diagnosis of the disease.

9.
Front Cell Dev Biol ; 9: 661747, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937263

RESUMO

PURPOSE: ROR2, a member of the ROR family, is essential for skeletal development as a receptor of Wnt5a. The present study aims to investigate the mutational spectrum of ROR2 in children with short stature and to identify the underlying molecular mechanisms. METHODS: We retrospectively analyzed clinical phenotype and whole-exome sequencing (WES) data of 426 patients with short stature through mutation screening of ROR2. We subsequently examined the changes in protein expression and subcellular location in ROR2 caused by the mutations. The mRNA expression of downstream signaling molecules of the Wnt5a-ROR2 pathway was also examined. RESULTS: We identified 12 mutations in ROR2 in 21 patients, including 10 missense, one nonsense, and one frameshift. Among all missense variants, four recurrent missense variants [c.1675G > A(p.Gly559Ser), c.2212C > T(p.Arg738Cys), c.1930G > A(p.Asp644Asn), c.2117G > A(p.Arg706Gln)] were analyzed by experiments in vitro. The c.1675G > A mutation significantly altered the expression and the cellular localization of the ROR2 protein. The c.1675G > A mutation also caused a significantly decreased expression of c-Jun. In contrast, other missense variants did not confer any disruptive effect on the biological functions of ROR2. CONCLUSION: We expanded the mutational spectrum of ROR2 in patients with short stature. Functional experiments potentially revealed a novel molecular mechanism that the c.1675G > A mutation in ROR2 might affect the expression of downstream Wnt5a-ROR2 pathway gene by disturbing the subcellular localization and expression of the protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA