RESUMO
Objectives: Add-on testing refers to the process that occurs in clinical laboratories when clinicians request that additional tests be performed on a previously analysed specimen. This is a common but inefficient procedure, highly time-consuming, especially at core laboratories and could be optimised by automating these procedures. The aims of this study are: 1) To describe patterns of add-on testing at a core laboratory at a tertiary hospital, 2) To evaluate turnaround time (TAT) before and after automation of the pre-, post- and analytical phases. Methods: Retrospective, observational study conducted at the biochemistry area of a core laboratory of all add-on orders received in two different months (pre-automation and post-automation). Results: A total of 2464 add-on orders were analysed, representing around 5 % of total requests. Most orders were for either one (>50 %) or two (≈20 %) tests. Most orders were received during the week (from Monday to Friday), particularly during the morning shift (>50 %). More than 50 % of requests were made by the Emergency Department. The two most common add-on parameters were C-reactive protein and N-terminal pro-brain natriuretic peptide. After automation, the median TAT decreased by 42.3 % (from 52 to 22 min). The largest decreases in TAT were observed for routine samples (58.89 %) and fully automated analyses (56.86 %). Conclusions: Automation of our core laboratory substantially reduced turnaround time for add-on testing, indicating an increase in efficiency. Automation eliminated several manual steps in the process, leading to a mean reduction of 15 work hours per day (more than 2 full-time equivalents).
RESUMO
The objective of this paper is to share some considerations about the management of postanalytical processes in relation to the review, reporting and release of test results in accordance with UNE-EN ISO 15189:2013 Standard requirements. The scope of this paper includes postanalytical activities and the personnel involved (laboratory management and staff). We describe the criteria and information required to review and validate analytical results and ensure that clear reports are sent to requesters. These criteria also guarantee that results are transcribed in a reliable way and that all necessary information is provided for the correct interpretation of results. Likewise, the requirements for the correct release of laboratory results are described, with special emphasis on the release of alarming or critical results. In some European countries, clinical laboratories are required to hold partial or full ISO 15189 accreditation, which is a global trend. Therefore, understanding ISO 15189 requirements is imperative for a progressive and more effective implementation of the Standard.
RESUMO
ISO 15189:2012 establishes the requirements for clinical sample management, ensuring quality of process and laboratory information management. The accreditation authority, ENAC in Spain, established the requirements for the authorized use of the label in reports issued by accredited laboratories. These recommendations are applicable to the postanalytical processes and the professionals involved. The Standard requires laboratories to define and document the duration and conditions of sample retention. Laboratories are also required to design an internal quality control scheme to verify whether postanalytical activities attain the expected standards. Information management requirements are also established and laboratories are required to design a contingency plan to ensure the communication of laboratory results. Instructions are finally provided about the correct use of the accreditation label in laboratory reports. A range of nations and scientific societies support that clinical laboratories should be required to obtain accreditation. With ISO 15189 being the most specific standard for demonstrating technical performance, a clear understanding of its requirements is essential for proper implementation.