Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(7): e17437, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-39054881

RESUMO

Ocean warming is driving significant changes in the structure and functioning of marine ecosystems, shifting species' biogeography and phenology, changing body size and biomass and altering the trophodynamics of the system. Particularly, extreme temperature events such as marine heatwaves (MHWs) have been increasing in intensity, duration and frequency. MHWs are causing large-scale impacts on marine ecosystems, such as coral bleaching, mass mortality of seagrass meadows and declines in fish stocks and other marine organisms in recent decades. In this study, we developed and applied a dynamic version of the EcoTroph trophodynamic modelling approach to study the cascading effects of individual MHW on marine ecosystem functioning. We simulated theoretical user-controlled ecosystems and explored the consequences of various assumptions of marine species mortality along the food web, associated with different MHW intensities. We show that an MHW can lead to a significant biomass reduction of all consumers, with the severity of the declines being dependent on species trophic levels (TLs) and biomes, in addition to the characteristics of MHWs. Biomass of higher TLs declines more than lower TLs under an MHW, leading to changes in ecosystem structure. While tropical ecosystems are projected to be sensitive to low-intensity MHWs, polar and temperate ecosystems are expected to be impacted by more intense MHWs. The estimated time to recover from MHW impacts is twice as long for polar ecosystems and one-third longer for temperate biomes compared with tropical biomes. This study highlights the importance of considering extreme weather events in assessing the effects of climate change on the structures and functions of marine ecosystems.


Assuntos
Biomassa , Ecossistema , Animais , Mudança Climática , Cadeia Alimentar , Organismos Aquáticos/fisiologia , Oceanos e Mares , Modelos Teóricos , Temperatura Alta/efeitos adversos
2.
PLoS One ; 18(8): e0287570, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37611010

RESUMO

Marine animal biomass is expected to decrease in the 21st century due to climate driven changes in ocean environmental conditions. Previous studies suggest that the magnitude of the decline in primary production on apex predators could be amplified through the trophodynamics of marine food webs, leading to larger decreases in the biomass of predators relative to the decrease in primary production, a mechanism called trophic amplification. We compared relative changes in producer and consumer biomass or production in the global ocean to assess the extent of trophic amplification. We used simulations from nine marine ecosystem models (MEMs) from the Fisheries and Marine Ecosystem Models Intercomparison Project forced by two Earth System Models under the high greenhouse gas emissions Shared Socioeconomic Pathways (SSP5-8.5) and a scenario of no fishing. Globally, total consumer biomass is projected to decrease by 16.7 ± 9.5% more than net primary production (NPP) by 2090-2099 relative to 1995-2014, with substantial variations among MEMs and regions. Total consumer biomass is projected to decrease almost everywhere in the ocean (80% of the world's oceans) in the model ensemble. In 40% of the world's oceans, consumer biomass was projected to decrease more than NPP. Additionally, in another 36% of the world's oceans consumer biomass is expected to decrease even as projected NPP increases. By analysing the biomass response within food webs in available MEMs, we found that model parameters and structures contributed to more complex responses than a consistent amplification of climate impacts of higher trophic levels. Our study provides additional insights into the ecological mechanisms that will impact marine ecosystems, thereby informing model and scenario development.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Estado Nutricional , Clima , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA