Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(5): 1243-1251.e12, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080070

RESUMO

The crystal structure of the ß2-adrenergic receptor (ß2AR) bound to the G protein adenylyl cyclase stimulatory G protein (Gs) captured the complex in a nucleotide-free state (ß2AR-Gsempty). Unfortunately, the ß2AR-Gsempty complex does not provide a clear explanation for G protein coupling specificity. Evidence from several sources suggests the existence of a transient complex between the ß2AR and GDP-bound Gs protein (ß2AR-GsGDP) that may represent an intermediate on the way to the formation of ß2AR-Gsempty and may contribute to coupling specificity. Here we present a structure of the ß2AR in complex with the carboxyl terminal 14 amino acids from Gαs along with the structure of the GDP-bound Gs heterotrimer. These structures provide evidence for an alternate interaction between the ß2AR and Gs that may represent an intermediate that contributes to Gs coupling specificity.


Assuntos
Adenilil Ciclases/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Receptores Adrenérgicos beta 2/química , Humanos , Relação Estrutura-Atividade
2.
Nature ; 615(7954): 939-944, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949205

RESUMO

Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.


Assuntos
Rodopsina , Visão Ocular , Animais , Sítios de Ligação/efeitos da radiação , Cristalografia , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Isomerismo , Fótons , Ligação Proteica/efeitos da radiação , Conformação Proteica/efeitos da radiação , Retinaldeído/química , Retinaldeído/metabolismo , Retinaldeído/efeitos da radiação , Rodopsina/química , Rodopsina/metabolismo , Rodopsina/efeitos da radiação , Fatores de Tempo , Visão Ocular/fisiologia , Visão Ocular/efeitos da radiação
3.
Mol Cell ; 81(5): 905-921.e5, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497605

RESUMO

Adhesion G protein-coupled receptors (aGPCRs)/family B2 GPCRs execute critical tasks during development and the operation of organs, and their genetic lesions are associated with human disorders, including cancers. Exceptional structural aGPCR features are the presence of a tethered agonist (TA) concealed within a GPCR autoproteolysis-inducing (GAIN) domain and their non-covalent heteromeric two-subunit layout. How the TA is poised for activation while maintaining this delicate receptor architecture is central to conflicting signaling paradigms that either involve or exclude aGPCR heterodimer separation. We investigated this matter in five mammalian aGPCR homologs (ADGRB3, ADGRE2, ADGRE5, ADGRG1, and ADGRL1) and demonstrate that intact aGPCR heterodimers exist at the cell surface, that the core TA region becomes unmasked in the cleaved GAIN domain, and that intra-GAIN domain movements regulate the level of tethered agonist exposure, thereby likely controlling aGPCR activity. Collectively, these findings delineate a unifying mechanism for TA-dependent signaling of intact aGPCRs.


Assuntos
Antígenos CD/química , Proteínas do Tecido Nervoso/química , Peptídeos/química , Receptores Acoplados a Proteínas G/química , Receptores de Peptídeos/química , Sequência de Aminoácidos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Expressão Gênica , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteólise , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
4.
Mol Psychiatry ; 28(5): 1960-1969, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36604603

RESUMO

Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of ß-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.

5.
Nucleic Acids Res ; 50(D1): D858-D866, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34761257

RESUMO

SCoV2-MD (www.scov2-md.org) is a new online resource that systematically organizes atomistic simulations of the SARS-CoV-2 proteome. The database includes simulations produced by leading groups using molecular dynamics (MD) methods to investigate the structure-dynamics-function relationships of viral proteins. SCoV2-MD cross-references the molecular data with the pandemic evolution by tracking all available variants sequenced during the pandemic and deposited in the GISAID resource. SCoV2-MD enables the interactive analysis of the deposited trajectories through a web interface, which enables users to search by viral protein, isolate, phylogenetic attributes, or specific point mutation. Each mutation can then be analyzed interactively combining static (e.g. a variety of amino acid substitution penalties) and dynamic (time-dependent data derived from the dynamics of the local geometry) scores. Dynamic scores can be computed on the basis of nine non-covalent interaction types, including steric properties, solvent accessibility, hydrogen bonding, and other types of chemical interactions. Where available, experimental data such as antibody escape and change in binding affinities from deep mutational scanning experiments are also made available. All metrics can be combined to build predefined or custom scores to interrogate the impact of evolving variants on protein structure and function.


Assuntos
COVID-19/virologia , Bases de Dados Genéticas , Simulação de Dinâmica Molecular , SARS-CoV-2/genética , Software , Proteínas Virais/genética , Evolução Molecular , Regulação Viral da Expressão Gênica , Genoma Viral , Humanos , Ligação de Hidrogênio , Internet , Modelos Moleculares , Filogenia , Mutação Puntual , Ligação Proteica , Mapeamento de Interação de Proteínas , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/metabolismo
6.
Trends Biochem Sci ; 44(7): 629-639, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30853245

RESUMO

Vertebrate vision starts with light absorption by visual pigments in rod and cone photoreceptor cells of the retina. Rhodopsin, in rod cells, responds to dim light, whereas three types of cone opsins (red, green, and blue) function under bright light and mediate color vision. Cone opsins regenerate with retinal much faster than rhodopsin, but the molecular mechanism of regeneration is still unclear. Recent advances in the area pinpoint transient intermediate opsin conformations, and a possible secondary retinal-binding site, as determinant factors for regeneration. In this Review, we compile previous and recent findings to discuss possible mechanisms of ligand entry in cone opsins, involving a secondary binding site, which may have relevant functional and evolutionary implications.


Assuntos
Células Fotorreceptoras Retinianas Cones/química , Sítios de Ligação , Humanos , Ligantes , Rodopsina/química
7.
Nat Methods ; 17(8): 777-787, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661425

RESUMO

G-protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new three-dimensional (3D) molecular structures of GPCRs (3D-GPCRome) over the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique for exploring the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd (http://gpcrmd.org/), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyze and share GPCR MD data. GPCRmd originates from a community-driven effort to create an open, interactive and standardized database of GPCR MD simulations.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Software , Metaboloma , Modelos Moleculares , Conformação Proteica
9.
Nucleic Acids Res ; 48(W1): W54-W59, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32484557

RESUMO

Internal water molecules play an essential role in the structure and function of membrane proteins including G protein-coupled receptors (GPCRs). However, technical limitations severely influence the number and certainty of observed water molecules in 3D structures. This may compromise the accuracy of further structural studies such as docking calculations or molecular dynamics simulations. Here we present HomolWat, a web application for incorporating water molecules into GPCR structures by using template-based modelling of homologous water molecules obtained from high-resolution structures. While there are various tools available to predict the positions of internal waters using energy-based methods, the approach of borrowing lacking water molecules from homologous GPCR structures makes HomolWat unique. The tool can incorporate water molecules into a protein structure in about a minute with around 85% of water recovery. The web server is freely available at http://lmc.uab.es/homolwat.


Assuntos
Receptores Acoplados a Proteínas G/química , Software , Água/química , Internet , Modelos Moleculares , Conformação Proteica , Receptor 5-HT2A de Serotonina/química
10.
Bioinformatics ; 36(10): 3271-3272, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32096817

RESUMO

MOTIVATION: G protein-coupled receptors (GPCRs) can form homo-, heterodimers and larger order oligomers that exert different functions than monomers. The pharmacological potential of such complexes is hampered by the limited information available on the type of complex formed and its quaternary structure. Several GPCR structures in the Protein Data Bank display crystallographic interfaces potentially compatible with physiological interactions. RESULTS: Here, we present DIMERBOW, a database and web application aimed to visually browse the complete repertoire of potential GPCR dimers present in solved structures. The tool is suited to help finding the best possible structural template to model GPCR homomers. AVAILABILITY AND IMPLEMENTATION: DIMERBOW is available at http://lmc.uab.es/dimerbow/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Receptores Acoplados a Proteínas G , Bases de Dados de Proteínas , Substâncias Macromoleculares
11.
Pharmacol Res ; 173: 105880, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506902

RESUMO

G proteins represent intracellular switches that transduce signals relayed from G protein-coupled receptors. The structurally related macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent, selective inhibitors of the Gαq protein family. We recently discovered that radiolabeled FR and YM display strongly divergent residence times, which translates into significantly longer antiasthmatic effects of FR. The present study is aimed at investigating the molecular basis for this observed disparity. Based on docking studies, we mutated amino acid residues of the Gαq protein predicted to interact with FR or YM, and recombinantly expressed the mutated Gαq proteins in cells in which the native Gαq proteins had been knocked out by CRISPR-Cas9. Both radioligands showed similar association kinetics, and their binding followed a conformational selection mechanism, which was rationalized by molecular dynamics simulation studies. Several mutations of amino acid residues near the putative binding site of the "lipophilic anchors" of FR, especially those predicted to interact with the isopropyl group present in FR but not in YM, led to dramatically accelerated dissociation kinetics. Our data indicate that the long residence time of FR depends on lipophilic interactions within its binding site. The observed structure-kinetic relationships point to a complex binding mechanism of FR, which likely involves snap-lock- or dowel-like conformational changes of either ligand or protein, or both. These experimental data will be useful for the design of compounds with a desired residence time, a parameter that has now been recognized to be of utmost importance in drug development.


Assuntos
Depsipeptídeos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Ligação Proteica
12.
BMC Biol ; 18(1): 9, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973708

RESUMO

BACKGROUND: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. RESULTS: Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. CONCLUSIONS: We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.


Assuntos
Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Masculino , Ratos , Ratos Wistar , Transmissão Sináptica , Transfecção
13.
Molecules ; 26(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673080

RESUMO

This study investigated the effect of type 1 gonadotropin releasing hormone receptor (GnRH-R) localization within lipid rafts on the properties of plasma membrane (PM) nanodomain structure. Confocal microscopy revealed colocalization of PM-localized GnRH-R with GM1-enriched raft-like PM subdomains. Electron paramagnetic resonance spectroscopy (EPR) of a membrane-partitioned spin probe was then used to study PM fluidity of immortalized pituitary gonadotrope cell line αT3-1 and HEK-293 cells stably expressing GnRH-R and compared it with their corresponding controls (αT4 and HEK-293 cells). Computer-assisted interpretation of EPR spectra revealed three modes of spin probe movement reflecting the properties of three types of PM nanodomains. Domains with an intermediate order parameter (domain 2) were the most affected by the presence of the GnRH-Rs, which increased PM ordering (order parameter (S)) and rotational mobility of PM lipids (decreased rotational correlation time (τc)). Depletion of cholesterol by methyl-ß-cyclodextrin (methyl-ß-CD) inhibited agonist-induced GnRH-R internalization and intracellular Ca2+ activity and resulted in an overall reduction in PM order; an observation further supported by molecular dynamics (MD) simulations of model membrane systems. This study provides evidence that GnRH-R PM localization may be related to a subdomain of lipid rafts that has lower PM ordering, suggesting lateral heterogeneity within lipid raft domains.


Assuntos
Lipídeos de Membrana/química , Microdomínios da Membrana/química , Receptores LHRH/química , Colesterol/química , Colesterol/genética , Espectroscopia de Ressonância de Spin Eletrônica , Células HEK293 , Humanos , Lipídeos de Membrana/genética , Microdomínios da Membrana/genética , Microdomínios da Membrana/ultraestrutura , Domínios Proteicos/genética , Receptores LHRH/genética , Receptores LHRH/uso terapêutico , Receptores LHRH/ultraestrutura , Transdução de Sinais/genética
14.
PLoS Comput Biol ; 15(5): e1007033, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107861

RESUMO

G protein-coupled receptors (GPCRs) control cellular signaling and responses. Many of these GPCRs are modulated by cholesterol and polyunsaturated fatty acids (PUFAs) which have been shown to co-exist with saturated lipids in ordered membrane domains. However, the lipid compositions of such domains extracted from the brain cortex tissue of individuals suffering from GPCR-associated neurological disorders show drastically lowered levels of PUFAs. Here, using free energy techniques and multiscale simulations of numerous membrane proteins, we show that the presence of the PUFA DHA helps helical multi-pass proteins such as GPCRs partition into ordered membrane domains. The mechanism is based on hybrid lipids, whose PUFA chains coat the rough protein surface, while the saturated chains face the raft environment, thus minimizing perturbations therein. Our findings suggest that the reduction of GPCR partitioning to their native ordered environments due to PUFA depletion might affect the function of these receptors in numerous neurodegenerative diseases, where the membrane PUFA levels in the brain are decreased. We hope that this work inspires experimental studies on the connection between membrane PUFA levels and GPCR signaling.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Biologia Computacional , Simulação por Computador , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Modelos Neurológicos , Conformação Proteica , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/química , Células Receptoras Sensoriais/química , Transdução de Sinais , Termodinâmica
16.
Biochim Biophys Acta Biomembr ; 1860(5): 1105-1113, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29391167

RESUMO

The ß-secretase (BACE1) features a unique sulfur rich motif (M462xxxC466xxxM470xxxC474xxxC478) in its transmembrane helix (BACE1-TM) which is characteristic for proteins involved in copper ion storage and transport. While this motif has been shown to promote BACE1-TM trimerization and binding of copper ions in vitro, the structural basis for the interaction of copper ions with the BACE1-TM is still not well understood. Using molecular dynamics (MD) simulations, we show that membrane embedded BACE1-TMs adopt a flexible trimeric structure that binds and conducts copper ions through variable coordination. In coarse-grained (CG) MD simulations, the spontaneous assembly of BACE1-TMs trimers results in a right-handed helix packing arrangement. In subsequent atomistic MD simulations the sulfur rich motif defines characteristic copper ion coordination sites along a constricted partially solvated axial pore. Sliding and tilting of BACE1-TMs along smooth A459xxxA463/464xxA467 surfaces, facilitated by a central P472 induced kink, enables copper ions to alternate between different coordination sites, including the prominent C466 and M470. We shed light into the structural arrangement of BACE1-TM trimers and propose a mechanism for copper ion conduction that might also apply to other proteins involved in metal ion transport.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Cobre/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Sequências Hélice-Alça-Hélice/genética , Humanos , Transporte de Íons/genética , Íons/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética
17.
Biotechnol Appl Biochem ; 65(1): 29-37, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28877377

RESUMO

The serotonin 5-hydroxytryptamine 2A (5-HT2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs.


Assuntos
Antipsicóticos/farmacologia , Membrana Celular/química , Colesterol/farmacologia , Neurônios/química , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antipsicóticos/química , Colesterol/química , Humanos , Simulação de Dinâmica Molecular , Neurônios/citologia , Antagonistas do Receptor 5-HT2 de Serotonina/química
19.
Bioinformatics ; 30(10): 1478-80, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24451625

RESUMO

SUMMARY: Computer simulations are giving way to more complex and accurate studies of biological membranes by molecular dynamics (MD) simulations. The analysis of MD trajectories comprises the biophysical characterization of membrane properties or the study of protein-lipid interactions and dynamics. However, there is a lack of automated tools to analyse MD simulations of complex membrane or membrane-protein systems. Here we present MEMBPLUGIN, a plugin for the Visual Molecular Dynamics package that provides algorithms to measure a host of essential biophysical properties in simulated membranes. MEMBPLUGIN features are accessible both through a user-friendly graphical interface and as command-line procedures to be invoked in analysis scripts. AVAILABILITY AND IMPLEMENTATION: MEMBPLUGIN is a VMD extension written in Tcl. Multi-platform source code, documentation and tutorials are freely available at http://membplugin.sourceforge.net. CONTACT: toni.giorgino@isib.cnr.it or jana.selent@upf.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas de Membrana/análise , Simulação de Dinâmica Molecular , Algoritmos , Lipídeos de Membrana/análise , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Linguagens de Programação , Estrutura Terciária de Proteína
20.
Nat Struct Mol Biol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867113

RESUMO

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by promoting guanine nucleotide exchange. Here, we investigate the coupling of G proteins with GPCRs and describe the events that ultimately lead to the ejection of GDP from its binding pocket in the Gα subunit, the rate-limiting step during G-protein activation. Using molecular dynamics simulations, we investigate the temporal progression of structural rearrangements of GDP-bound Gs protein (Gs·GDP; hereafter GsGDP) upon coupling to the ß2-adrenergic receptor (ß2AR) in atomic detail. The binding of GsGDP to the ß2AR is followed by long-range allosteric effects that significantly reduce the energy needed for GDP release: the opening of α1-αF helices, the displacement of the αG helix and the opening of the α-helical domain. Signal propagation to the Gs occurs through an extended receptor interface, including a lysine-rich motif at the intracellular end of a kinked transmembrane helix 6, which was confirmed by site-directed mutagenesis and functional assays. From this ß2AR-GsGDP intermediate, Gs undergoes an in-plane rotation along the receptor axis to approach the ß2AR-Gsempty state. The simulations shed light on how the structural elements at the receptor-G-protein interface may interact to transmit the signal over 30 Å to the nucleotide-binding site. Our analysis extends the current limited view of nucleotide-free snapshots to include additional states and structural features responsible for signaling and G-protein coupling specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA