Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252168

RESUMO

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Internalização do Vírus/efeitos dos fármacos , Cloreto de Amônio/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Cloroquina/farmacologia , Clatrina/metabolismo , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidroxicloroquina/administração & dosagem , Macrolídeos/farmacologia , Niclosamida/administração & dosagem , Niclosamida/farmacologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/fisiologia , Células Vero
2.
Lancet Reg Health Southeast Asia ; 22: 100361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482152

RESUMO

Background: There are limited global data on head-to-head comparisons of vaccine platforms assessing both humoral and cellular immune responses, stratified by pre-vaccination serostatus. The COVID-19 vaccination drive for the Indian population in the age group 18-45 years began in April 2021 when seropositivity rates in the general population were rising due to the delta wave of COVID-19 pandemic during April-May 2021. Methods: Between June 30, 2021, and Jan 28, 2022, we enrolled 691 participants in the age group 18-45 years across four clinical sites in India. In this non-randomised and laboratory blinded study, participants received either two doses of Covaxin® (4 weeks apart) or two doses of Covishield™ (12 weeks apart) as per the national vaccination policy. The primary outcome was the seroconversion rate and the geometric mean titre (GMT) of antibodies against the SARS-CoV-2 spike and nucleocapsid proteins post two doses. The secondary outcome was the frequency of cellular immune responses pre- and post-vaccination. Findings: When compared to pre-vaccination baseline, both vaccines elicited statistically significant seroconversion and binding antibody levels in both seronegative and seropositive individuals. In the per-protocol cohort, Covishield™ elicited higher antibody responses than Covaxin® as measured by seroconversion rate (98.3% vs 74.4%, p < 0.0001 in seronegative individuals; 91.7% vs 66.9%, p < 0.0001 in seropositive individuals) as well as by anti-spike antibody levels against the ancestral strain (GMT 1272.1 vs 75.4 binding antibody units/ml [BAU/ml], p < 0.0001 in seronegative individuals; 2089.07 vs 585.7 BAU/ml, p < 0.0001 in seropositive individuals). As participants at all clinical sites were not recruited at the same time, site-specific immunogenicity was impacted by the timing of vaccination relative to the delta and omicron waves. Surrogate neutralising antibody responses against variants-of-concern including delta and omicron was higher in Covishield™ recipients than in Covaxin® recipients; and in seropositive than in seronegative individuals after both vaccination and asymptomatic infection (omicron variant). T cell responses are reported from only one of the four site cohorts where the vaccination schedule preceded the omicron wave. In seronegative individuals, Covishield™ elicited both CD4+ and CD8+ spike-specific cytokine-producing T cells whereas Covaxin® elicited mainly CD4+ spike-specific T cells. Neither vaccine showed significant post-vaccination expansion of spike-specific T cells in seropositive individuals. Interpretation: Covishield™ elicited immune responses of higher magnitude and breadth than Covaxin® in both seronegative individuals and seropositive individuals, across cohorts representing the pre-vaccination immune history of most of the vaccinated Indian population. Funding: Corporate social responsibility (CSR) funding from Hindustan Unilever Limited (HUL) and Unilever India Pvt. Ltd. (UIPL).

3.
Front Immunol ; 14: 1255478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022563

RESUMO

The continual emergence of SARS-CoV-2 variants threatens to compromise the effectiveness of worldwide vaccination programs, and highlights the need for complementary strategies for a sustainable containment plan. An effective approach is to mobilize the body's own antimicrobial peptides (AMPs), to combat SARS-CoV-2 infection and propagation. We have found that human cathelicidin (LL37), an AMP found at epithelial barriers as well as in various bodily fluids, has the capacity to neutralise multiple strains of SARS-CoV-2. Biophysical and computational studies indicate that LL37's mechanism of action is through the disruption of the viral membrane. This antiviral activity of LL37 is enhanced by the hydrotropic action of niacinamide, which may increase the bioavailability of the AMP. Interestingly, we observed an inverse correlation between LL37 levels and disease severity of COVID-19 positive patients, suggesting enhancement of AMP response as a potential therapeutic avenue to mitigate disease severity. The combination of niacinamide and LL37 is a potent antiviral formulation that targets viral membranes of various variants and can be an effective strategy to overcome vaccine escape.


Assuntos
COVID-19 , Catelicidinas , Humanos , Catelicidinas/farmacologia , SARS-CoV-2 , Peptídeos Catiônicos Antimicrobianos/farmacologia , Niacinamida , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA