Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 381(3): 204-216, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306474

RESUMO

Compensatory angiogenesis is an important adaptation for recovery from critical ischemia. We recently identified 20-hydroxyeicosatetraenoic acid (20-HETE) as a novel contributor of ischemia-induced angiogenesis. However, the precise mechanisms by which ischemia promotes 20-HETE increases that drive angiogenesis are unknown. This study aims to address the hypothesis that inflammatory neutrophil-derived myeloperoxidase (MPO) and hypochlorous acid (HOCl) critically contribute to 20-HETE increases leading to ischemic angiogenesis. Using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry, Laser Doppler Perfusion Imaging, and Microvascular Density analysis, we found that neutrophil depletion and MPO knockout mitigate angiogenesis and 20-HETE production in the gracilis muscles of mice subjected to hindlimb ischemia. Furthermore, we found MPO and HOCl to be elevated in these tissues postischemia as assessed by immunofluorescence microscopy and in vivo live imaging of HOCl. Next, we demonstrated that the additions of either HOCl or an enzymatic system for generating HOCl to endothelial cells increase the expression of CYP4A11 and its product, 20-HETE. Finally, pharmacological interference of hypoxia inducible factor (HIF) signaling results in ablation of HOCl-induced CYP4A11 transcript and significant reductions in CYP4A11 protein. Collectively, we conclude that neutrophil-derived MPO and its product HOCl activate HIF-1α and CYP4A11 leading to increased 20-HETE production that drives postischemic compensatory angiogenesis. SIGNIFICANCE STATEMENT: Traditionally, neutrophil derived MPO and HOCl are exclusively associated in the innate immunity as potent bactericidal/virucidal factors. The present study establishes a novel paradigm by proposing a unique function for MPO/HOCl as signaling agents that drive critical physiological angiogenesis by activating the CYP4A11-20-HETE signaling axis via a HIF-1α-dependent mechanism. The findings from this study potentially identify novel therapeutic targets for the treatment of ischemia and other diseases associated with abnormal angiogenesis.


Assuntos
Ácido Hipocloroso , Peroxidase , Animais , Células Endoteliais/metabolismo , Ácidos Hidroxieicosatetraenoicos , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/farmacologia , Isquemia/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Neutrófilos/metabolismo , Peroxidase/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 316(6): H1468-H1479, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951365

RESUMO

20-Hydroxyeicosatetraenoic acid (20-HETE) was recently identified as a novel contributor of ischemia-induced neovascularization based on the key observation that pharmacological interferences of CYP4A/20-HETE decrease ischemic neovascularization. The objective of the present study is to examine whether the underlying cellular mechanisms involve endothelial progenitor cells (EPCs) and preexisting endothelial cells (ECs). We found that ischemia leads to a time-dependent increase of cyp4a12 expression and 20-HETE production, which are endothelial in origin, using immunofluorescent microscopy, Western blot analysis, and LC-MS/MS. This is accompanied by increases in the tissue stromal cell-derived factor-1α (SDF-1α) expressions as well as SDF-1α plasma levels, EPC mobilization from bone marrow, and subsequent homing to ischemic tissues. Pharmacological interferences of CYP4A/20-HETE with a 20-HETE synthesis inhibitor, dibromo-dodecenyl-methylsulfimide (DDMS), or a 20-HETE antagonist, N-(20-hydroxyeicosa-6(Z), 15(Z)-dienoyl) glycine (6, 15-20-HEDGE), significantly attenuated these increases. Importantly, we also determined that 20-HETE plays a novel role in maintaining EPC functions and increasing the expression of Oct4, Sox2, and Nanog, which are indicative of increased progenitor cell stemness. Flow cytometric analysis revealed that pharmacological interferences of CYP4A/20-HETE decrease the EPC population in culture, whereas 20-HETE increases the cultured EPC population. Furthermore, ischemia also markedly increased the proliferation, oxidative stress, and ICAM-1 expression in the preexisting EC in the hindlimb gracilis muscles. We found that these increases were markedly negated by DDMS and 6, 15-20-HEDGE. Taken together, CYP4A/20-HETE regulates ischemia-induced compensatory neovascularization via its combined actions on promoting EPC and local preexisting EC responses that are associated with increased neovascularization. NEW & NOTEWORTHY CYP4A/20-hydroxyeicosatetraenoic acid (20-HETE) was recently discovered as a novel contributor of ischemia-induced neovascularization. However, the underlying molecular and cellular mechanisms are completely unknown. Here, we show that CYP4A/20-HETE regulates the ischemic neovascularization process via its combined actions on both endothelial progenitor cells (EPCs) and preexisting endothelial cells. Moreover, this is the first study, to the best of our knowledge, that associates CYP4A/20-HETE with EPC differentiation and stemness.


Assuntos
Citocromo P-450 CYP4A/metabolismo , Células Endoteliais/enzimologia , Células Progenitoras Endoteliais/enzimologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Isquemia/enzimologia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Animais , Células Cultivadas , Quimiocina CXCL12/metabolismo , Família 4 do Citocromo P450/metabolismo , Modelos Animais de Doenças , Membro Posterior , Humanos , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Tempo
3.
Artigo em Inglês | MEDLINE | ID: mdl-27825971

RESUMO

Eicosanoids are bioactive lipid products primarily derived from the oxidation of arachidonic acid (AA). The individual contributions of eicosanoids and stem cells to wound healing have been of great interest. This review focuses on how stem cells work in concert with eicosanoids to create a beneficial environment in the wound bed and in the promotion of wound healing. Stem cells contribute to wound healing through modulating inflammation, differentiating into skin cells or endothelial cells, and exerting paracrine effects by releasing various potent growth factors. Eicosanoids have been shown to stimulate proliferation, migration, homing, and differentiation of stem cells, all of which contribute to the process of wound healing. Increasing evidence has shown that eicosanoids improve wound healing through increasing stem cell densities, stimulating differentiation, and enhancing the angiogenic properties of stem cells. Chronic wounds have become a major problem in health care. Therefore, research regarding the effects of stem cells and eicosanoids in the promotion wound healing is of great importance.


Assuntos
Eicosanoides/metabolismo , Células-Tronco/citologia , Cicatrização , Animais , Eicosanoides/biossíntese , Humanos , Células-Tronco/metabolismo
4.
J Pharmacol Exp Ther ; 348(3): 442-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403517

RESUMO

Circulating endothelial progenitor cells (EPC) contribute to postnatal neovascularization. We identified the cytochrome P450 4A/F-20-hydroxyeicosatetraenoic acid (CYP4A/F-20-HETE) system as a novel regulator of EPC functions associated with angiogenesis in vitro. Here, we explored cellular mechanisms by which 20-HETE regulates EPC angiogenic functions and assessed its contribution to EPC-mediated angiogenesis in vivo. Results showed that both hypoxia and vascular endothelial growth factor (VEGF) induce CYP4A11 gene and protein expression (the predominant 20-HETE synthases in human EPC), and this is accompanied by an increase in 20-HETE production by ~1.4- and 1.8-fold, respectively, compared with the control levels. Additional studies demonstrated that 20-HETE and VEGF have a synergistic effect on EPC proliferation, whereas 20-HETE antagonist 20-HEDGE or VEGF-neutralizing antibody negated 20-HETE- or VEGF-induced proliferation, respectively. These findings are consistent with the presence of a positive feedback regulation on EPC proliferation between the 20-HETE and the VEGF pathways. Furthermore, we found that 20-HETE induced EPC adhesion to fibronectin and endothelial cell monolayer by 40 ± 5.6 and 67 ± 10%, respectively, which was accompanied by a rapid induction of very late antigen-4 and chemokine receptor type 4 mRNA and protein expression. Basal and 20-HETE-stimulated increases in adhesion were negated by the inhibition of the CYP4A-20-HETE system. Lastly, EPC increased angiogenesis in vivo by 3.6 ± 0.2-fold using the Matrigel plug angiogenesis assay, and these increases were markedly reduced by the local inhibition of 20-HETE system. These results strengthened the notion that 20-HETE regulates the angiogenic functions of EPC in vitro and EPC-mediated angiogenesis in vivo.


Assuntos
Endotélio Vascular/fisiologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Neovascularização Fisiológica , Células-Tronco/fisiologia , Animais , Anticorpos Neutralizantes/farmacologia , Adesão Celular , Hipóxia Celular , Proliferação de Células , Citocromo P-450 CYP4A , Sistema Enzimático do Citocromo P-450/metabolismo , Endotélio Vascular/citologia , Retroalimentação Fisiológica , Feminino , Fibronectinas/fisiologia , Humanos , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Integrina alfa4beta1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microvasos/fisiologia , Receptores CXCR4/metabolismo , Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
5.
Toxicol Appl Pharmacol ; 280(1): 10-20, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25094029

RESUMO

Flavonoids exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Anoikis resistance occurs at multiple key stages of the metastatic cascade. Here, we demonstrate that isoliquiritigenin (ISL), a flavonoid from Glycyrrhiza glabra, inhibits human breast cancer metastasis by preventing anoikis resistance, migration and invasion through downregulating cyclooxygenase (COX)-2 and cytochrome P450 (CYP) 4A signaling. ISL induced anoikis in MDA-MB-231 and BT-549 human breast cancer cells as evidenced by flow cytometry and the detection of caspase cleavage. Moreover, ISL inhibited the mRNA expression of phospholipase A2, COX-2 and CYP 4A and decreased the secretion of prostaglandin E2 (PGE2) and 20-hydroxyeicosatetraenoic acid (20-HETE) in detached MDA-MB-231 cells. In addition, it decreased the levels of phospho-PI3K (Tyr(458)), phospho-PDK (Ser(241)) and phospho-Akt (Thr(308)). Conversely, the exogenous addition of PGE2, WIT003 (a 20-HETE analog) and an EP4 agonist (CAY10580) or overexpression of constitutively active Akt reversed ISL-induced anoikis. ISL exerted the in vitro anti-migratory and anti-invasive activities, whereas the addition of PGE2, WIT003 and CAY10580 or overexpression of constitutively active Akt reversed the in vitro anti-migratory and anti-invasive activities of ISL in MDA-MB-231 cells. Notably, ISL inhibited the in vivo lung metastasis of MDA-MB-231 cells, together with decreased intratumoral levels of PGE2, 20-HETE and phospho-Akt (Thr(308)). In conclusion, ISL inhibits breast cancer metastasis by preventing anoikis resistance, migration and invasion via downregulating COX-2 and CYP 4A signaling. It suggests that ISL could be a promising multi-target agent for preventing breast cancer metastasis, and anoikis could represent a novel mechanism through which flavonoids may exert the anti-metastatic activities.


Assuntos
Anoikis/fisiologia , Neoplasias da Mama/enzimologia , Movimento Celular/fisiologia , Chalconas/farmacologia , Ciclo-Oxigenase 2/metabolismo , Citocromo P-450 CYP4A/metabolismo , Animais , Anoikis/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Chalconas/uso terapêutico , Citocromo P-450 CYP4A/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Glycyrrhiza , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/prevenção & controle , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Toxicol Appl Pharmacol ; 279(3): 311-321, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25026504

RESUMO

M2 macrophage polarization is implicated in colorectal cancer development. Isoliquiritigenin (ISL), a flavonoid from licorice, has been reported to prevent azoxymethane (AOM) induced colon carcinogenesis in animal models. Here, in a mouse model of colitis-associated tumorigenesis induced by AOM/dextran sodium sulfate (DSS), we investigated the chemopreventive effects of ISL and its mechanisms of action. Mice were treated with AOM/DSS and randomized to receive either vehicle or ISL (3, 15 and 75 mg/kg). Tumor load, histology, immunohistochemistry, and gene and protein expressions were determined. Intragastric administration of ISL for 12 weeks significantly decreased colon cancer incidence, multiplicity and tumor size by 60%, 55.4% and 42.6%, respectively. Moreover, ISL inhibited M2 macrophage polarization. Such changes were accompanied by downregulation of PGE2 and IL-6 signaling. Importantly, depletion of macrophages by clodronate (Clod) or zoledronic acid (ZA) reversed the effects of ISL. In parallel, in vitro studies also demonstrated that ISL limited the M2 polarization of RAW264.7 cells and mouse peritoneal macrophages with concomitant inactivation of PGE2/PPARδ and IL-6/STAT3 signaling. Conversely, exogenous addition of PGE2 or IL-6, or overexpression of constitutively active STAT3 reversed ISL-mediated inhibition of M2 macrophage polarization. In summary, dietary flavonoid ISL effectively inhibits colitis-associated tumorigenesis through hampering M2 macrophage polarization mediated by the interplay between PGE2 and IL-6. Thus, inhibition of M2 macrophage polarization is likely to represent a promising strategy for chemoprevention of colorectal cancer.


Assuntos
Chalconas/farmacologia , Colite/patologia , Neoplasias do Colo/prevenção & controle , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Inibidores Enzimáticos/farmacologia , Glycyrrhiza/química , Interleucina-6/antagonistas & inibidores , Interleucina-6/biossíntese , Macrófagos/efeitos dos fármacos , Animais , Western Blotting , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Colite/complicações , Colo/citologia , Colo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Transfecção
7.
Toxicol Appl Pharmacol ; 272(1): 37-48, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23747687

RESUMO

Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2'-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E2 (PGE2) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B4 (LTB4). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser(241)), phospho-Akt (Thr(308)), phospho-Bad (Ser(136)), and Bcl-xL expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE2, LTB4 and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr(308)). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic network and the deactivation of PI3K/Akt in human breast cancer.


Assuntos
Antineoplásicos Fitogênicos , Ácido Araquidônico/metabolismo , Neoplasias da Mama/tratamento farmacológico , Chalconas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína Oncogênica v-akt/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Eicosanoides/metabolismo , Feminino , Perfilação da Expressão Gênica , Glycyrrhiza/química , Humanos , Indicadores e Reagentes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Raízes de Plantas/química , Transfecção , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Prostaglandins Other Lipid Mediat ; 100-101: 15-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23291334

RESUMO

BACKGROUND: Circulating endothelial progenitor cells (EPCs) are recruited from the blood system to sites of ischemia and endothelial damage, where they contribute to the repair and development of blood vessels. Since numerous eicosanoids including leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) have been shown to exert potent pro-inflammatory activities, we examined their levels in chronic diabetic patients with severe cardiac ischemia in conjunction with the level and function of EPCs. RESULTS: Lipidomic analysis revealed a diabetes-specific increase (p<0.05) in inflammatory and angiogenic eicosanoids including the 5-lipoxygenase-derived LTB (4.11±1.17 vs. 0.96±0.27 ng/ml), the lipoxygenase/CYP-derived 12-HETE (117.08±35.05 vs. 24.34±10.03 ng/ml), 12-HETrE (17.56±4.43 vs. 4.15±2.07 ng/ml), and the CYP-derived 20-HETE (0.32±0.04 vs. 0.06±0.05 ng/ml) the level of which correlated with BMI (p=0.0027). In contrast, levels of the CYP-derived EETs were not significantly (p=0.36) different between these two groups. EPC levels and their colony-forming units were lower (p<0.05) with a reduced viability in diabetic patients compared with non-diabetics. EPC function (colony-forming units (CFUs) and MTT assay) also negatively correlated with the circulating levels of HgA1C. CONCLUSION: This study demonstrates a close association between elevated levels of highly pro-inflammatory eicosonoids, diabetes and EPC dysfunction in patients with cardiac ischemia, indicating that chronic inflammation impact negatively on EPC function and angiogenic capacity in diabetes.


Assuntos
Diabetes Mellitus/sangue , Eicosanoides/sangue , Células Endoteliais/metabolismo , Isquemia Miocárdica/sangue , Células-Tronco/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/sangue , Antígeno AC133 , Idoso , Antígenos CD/sangue , Índice de Massa Corporal , Sobrevivência Celular , Cromatografia Líquida , Diabetes Mellitus/fisiopatologia , Feminino , Citometria de Fluxo , Glicoproteínas/sangue , Humanos , Ácidos Hidroxieicosatetraenoicos/sangue , Leucotrieno B4/sangue , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/fisiopatologia , Peptídeos/sangue , Espectrometria de Massas em Tandem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue
9.
Prostaglandins Other Lipid Mediat ; 98(3-4): 63-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22227460

RESUMO

Cytochrome P450 4A/F (CYP4A/F) converts arachidonic acid (AA) to 20-HETE by ω-hydroxylation. The contribution of 20-HETE to the regulation of myogenic response, blood pressure, and mitogenic actions has been well summarized. This review focuses on the emerging role of 20-HETE in physiological and pathological vascularization. 20-HETE has been shown to regulate vascular smooth muscle cells (VSMC) and endothelial cells (EC) by affecting their proliferation, migration, survival, and tube formation. Furthermore, the proliferation, migration, secretion of proangiogenic molecules (such as HIF-1α, VEGF, SDF-1α), and tube formation of endothelial progenitor cells (EPC) are stimulated by 20-HETE. These effects are mediated through c-Src- and EGFR-mediated downstream signaling pathways, including MAPK and PI3K/Akt pathways, eNOS uncoupling, and NOX/ROS system activation. Therefore, the CYP4A/F-20-HETE system may be a therapeutic target for the treatment of abnormal angiogenic diseases.


Assuntos
Ácidos Hidroxieicosatetraenoicos/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Animais , Citocromo P-450 CYP4A/metabolismo , Células Endoteliais/metabolismo , Humanos , Transdução de Sinais
10.
Cancer Res ; 82(21): 4016-4030, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36006988

RESUMO

SIGNIFICANCE: The identification of a role for CYP4F2-dependent metabolism in driving immune evasion in non-small cell lung cancer reveals a strategy to improve the efficacy of immunotherapy by inhibiting CYP4F2. See related article by Van Ginderachter, p. 3882.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Família 4 do Citocromo P450 , Neoplasias Pulmonares , Humanos , Ácido Araquidônico/metabolismo , Catálise , Família 4 do Citocromo P450/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Terapia de Imunossupressão , Células Estromais/metabolismo
11.
Front Pharmacol ; 13: 1042756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793921

RESUMO

Introduction: Cytochrome P450 (CYP) 3A4 is a major drug metabolizing enzyme for corticosteroids (CS). Epimedium has been used for asthma and variety of inflammatory conditions with or without CS. It is unknown whether epimedium has an effect on CYP 3A4 and how it interacts with CS. We sought to determine the effects of epimedium on CYP3A4 and whether it affects the anti-inflammatory function of CS and identify the active compound responsible for this effect. Methods: The effect of epimedium on CYP3A4 activity was evaluated using the Vivid CYP high-throughput screening kit. CYP3A4 mRNA expression was determined in human hepatocyte carcinoma (HepG2) cells with or without epimedium, dexamethasone, rifampin, and ketoconazole. TNF-α levels were determined following co-culture of epimedium with dexamethasone in a murine macrophage cell line (Raw 264.7). Active compound (s) derived from epimedium were tested on IL-8 and TNF-α production with or without corticosteroid, on CYP3A4 function and binding affinity. Results: Epimedium inhibited CYP3A4 activity in a dose-dependent manner. Dexamethasone enhanced the expression of CYP3A4 mRNA, while epimedium inhibited the expression of CYP3A4 mRNA and further suppressed dexamethasone enhancement of CYP3A4 mRNA expression in HepG2 cells (p < 0.05). Epimedium and dexamethasone synergistically suppressed TNF-α production by RAW cells (p < 0.001). Eleven epimedium compounds were screened by TCMSP. Among the compounds identified and tested only kaempferol significantly inhibited IL-8 production in a dose dependent manner without any cell cytotoxicity (p < 0.01). Kaempferol in combination with dexamethasone showed complete elimination of TNF-α production (p < 0.001). Furthermore, kaempferol showed a dose dependent inhibition of CYP3A4 activity. Computer docking analysis showed that kaempferol significantly inhibited the catalytic activity of CYP3A4 with a binding affinity of -44.73kJ/mol. Discussion: Inhibition of CYP3A4 function by epimedium and its active compound kaempferol leads to enhancement of CS anti-inflammatory effect.

12.
J Pharmacol Exp Ther ; 338(2): 421-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21527533

RESUMO

Endothelial progenitor cells (EPCs) contribute to physiological and pathological neovascularization. Previous data have suggested that the cytochrome P450 4A/F (CYP4A/F)-20-hydroxyeicosatetraenoic acid (20-HETE) system regulates neovascularization. Therefore, we studied whether the angiogenic effects of the CYP4A/F-20-HETE system involve regulation of EPC function. We extracted human umbilical cord blood and isolated EPCs, which express AC133(+)CD34(+) and kinase insert domain receptor (KDR) surface markers and contain mRNA and protein for CYP4A11 and CYP4A22 enzymes, as opposed to mesenchymal stem cells, which only express negligible amounts of CYP4A11/22. When EPCs were incubated with arachidonic acid, they produced 20-HETE, which stimulated the cells to proliferate and migrate, as did vascular endothelial growth factor. Incubation with 1 µM N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET0016), a selective inhibitor of 20-HETE synthesis, reduced the proliferative and migratory effects of vascular endothelial growth factor and also significantly abolished EPC migration mediated by stroma-derived factor-1α, as did (6,15) 20-hydroxyeicosadienoic acid. Coculturing EPCs and endothelial cells on a Matrigel matrix led to tube formation, which in turn was inhibited by both HET0016 and 20-hydroxyeicosadienoic acid. We concluded that the CYP4A/F-20-HETE system is expressed in EPCs and can act as both an autocrine and a paracrine regulatory factor.


Assuntos
Citocromo P-450 CYP4A/fisiologia , Células Endoteliais/fisiologia , Sangue Fetal/fisiologia , Células-Tronco Fetais/fisiologia , Ácidos Hidroxieicosatetraenoicos/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Células Endoteliais/citologia , Sangue Fetal/citologia , Células-Tronco Fetais/citologia , Humanos
13.
Oncogene ; 40(40): 5925-5937, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363021

RESUMO

Low levels of ITLN1 have been correlated with obesity-related colorectal carcinogenesis, however, the specific functions and underlying mechanisms remain unclear. Thus, we sought to explore the inhibitory role of ITLN1 in the tumor-permissive microenvironment that exists during the first occurrence and subsequent development of colorectal carcinoma (CRC). Results indicated that ITLN1 was frequently lost in CRC tissues and ITLN1 to be an independent prognostic predictor of CRC. Orthotopic and subcutaneous tumor xenograft approaches were then used to further confirm the protective role of ITLN1 during tumor progression. Increased ITLN1 expression in CRC cells significantly inhibited local pre-existing vessels sprouting, EPC recruitment and the infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) into tumor tissues without affecting the behavior of CRC cells in vitro. Comparatively, ITLN1-derived MDSCs had a lower suppressive effect on T cell proliferation, NOS2 expression, and ROS production. In addition, ITLN1 overexpression markedly suppressed bone marrow (BM)-derived hematopoietic progenitor cells (HPC) differentiation into MDSCs as well as NOS2 activity on MDSCs. Using H-2b+YFP + chimerism through bone marrow transplantation, increased ITLN1 in HCT116 significantly reduced the BM-derived EPCs and MDSCs in vivo mobilization. Mechanistically, results indicated ITLN1 inhibited tumor-derived IL-17D and CXCL2 (MIP2) through the KEAP1/Nrf2/ROS/IL-17D and p65 NF-ĸB/CXCL2 signaling cascades dependent on PI3K/AKT/GSK3ß. This effect was reversed by the PI3K selective inhibitor LY294002. Collectively, ITLN1 synergistically suppressed IL-17D and CXCL2-mediated tumor vascularization, bone marrow derived EPC recruitment, as well as MDSCs generation and trafficking. Thus, ITLN1 potentially serves as a critical prognostic and therapeutic target for CRC.


Assuntos
Neoplasias Colorretais/genética , Citocinas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Lectinas/metabolismo , Células Supressoras Mieloides/metabolismo , Animais , Neoplasias Colorretais/patologia , Humanos , Camundongos , Neovascularização Patológica
14.
Am J Physiol Heart Circ Physiol ; 297(2): H602-13, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19502554

RESUMO

20-HETE increases the expression of VEGF in human dermal microvascular endothelial cells (ECs). Since VEGF is regulated by hypoxia inducible factor (HIF)-1, we studied whether 20-HETE also upregulates HIF-1alpha using the stable 20-HETE analog 20-hydroxyeicosa-5(Z),14(Z)dienoic acid (WIT003; 1-10 microM) and found that it induced a marked increase in HIF-1alpha protein levels. The increases in VEGF after the addition of WIT003 preceded the changes in HIF-1alpha, and the increases in HIF-1alpha were prevented by a VEGF neutralizing antibody. This suggests that 20-HETE first causes increases in VEGF, which then, in turn, cause the upregulation of HIF-1alpha. Stimulation with exogenously added VEGF also led to an upregulation of HIF-1alpha. Incubation with the MEK1/ERK1/2 inhibitor U-0126 (10 microM) completely abolished the increases in VEGF and thus HIF-1alpha, suggesting the involvement of ERK1/2 activation. The addition of WIT003 resulted in a rapid and sustained increase in superoxide formation. When WIT003 was added in the presence of the nitric oxide (NO) synthase (NOS) inhibitor N-nitro-L-arginine, no changes in superoxide, VEGF, or HIF-1alpha were observed. This suggests that NOS is responsible for the early changes in superoxide induced by WIT003. Furthermore, WIT003 induced the expression of the NADPH oxidase subunit p47(phox) in ECs before the increases in HIF-1alpha. Incubation with polyethylene glycol-superoxide dismutase (400 U/ml), apocynin (100 microM), diphenylene iodonium (10 microM), or p47(phox) downregulation with small interfering (si)RNA all inhibited the increases in HIF-1alpha expression. This indicates that the early changes in superoxide lead to VEGF increases and thereby NADPH oxidase-dependent superoxide production, which is required for HIF-1alpha upregulation. We also found that the higher HIF-1alpha expression induced by WIT003 was accompanied by higher expression of erythropoietin receptor and angiopoietin-2 proteins. These increases were caused by HIF-1alpha because their levels were markedly decreased by siRNA downregulation of HIF-1alpha. 20-HETE may be a novel nonhypoxic regulator of HIF-1alpha and HIF-1alpha-regulated genes in ECs.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Ácidos Hidroxieicosatetraenoicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Butadienos/farmacologia , Capilares/citologia , Células Cultivadas , Derme/irrigação sanguínea , Células Endoteliais/citologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase/metabolismo , Nitrilas/farmacologia , RNA Interferente Pequeno , Superóxidos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
J Cereb Blood Flow Metab ; 39(8): 1531-1543, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29485354

RESUMO

20-HETE, an arachidonic acid metabolite synthesized by cytochrome P450 4A, plays an important role in acute brain damage from ischemic stroke or subarachnoid hemorrhage. We tested the hypothesis that 20-HETE inhibition has a protective effect after intracerebral hemorrhage (ICH) and then investigated its effect on angiogenesis. We exposed hippocampal slice cultures to hemoglobin and induced ICH in mouse brains by intrastriatal collagenase injection to investigate the protective effect of 20-HETE synthesis inhibitor N-hydroxy-N'-(4-n-butyl-2-methylphenyl)-formamidine (HET0016). Hemoglobin-induced neuronal death was assessed by propidium iodide after 18 h in vitro. Lesion volume, neurologic deficits, cell death, reactive oxygen species (ROS), neuroinflammation, and angiogenesis were evaluated at different time points after ICH. In cultured mouse hippocampal slices, HET0016 attenuated hemoglobin-induced neuronal death and decreased levels of proinflammatory cytokines and ROS. In vivo, HET0016 reduced brain lesion volume and neurologic deficits, and decreased neuronal death, ROS production, gelatinolytic activity, and the inflammatory response at three days after ICH. However, HET0016 did not inhibit angiogenesis, as levels of CD31, VEGF, and VEGFR2 were unchanged on day 28. We conclude that 20-HETE is involved in ICH-induced brain damage. Inhibition of 20-HETE synthesis may provide a viable means to mitigate ICH injury without inhibition of angiogenesis.


Assuntos
Hemorragia Cerebral/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Hemorragia Cerebral/patologia , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos
16.
J Pharmacol Exp Ther ; 327(1): 10-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18591218

RESUMO

Exogenous 20-hydroxyeicosatetraenoic acid (20-HETE) increases the growth of human glioma cells in vitro. However, glioma cells in culture show negligible 20-HETE synthesis. We examined whether inducing the expression of a 20-HETE synthase in a human glioma U251 cell line would increase proliferation. U251 cells transfected with CYP4A1 cDNA (termed U251 O) increased the formation of 20-HETE from less than 1 to over 60 pmol/min/mg proteins and increased their proliferation rate by 2-fold (p < 0.01). Compared with control U251, U251 O cells were rounded, smaller, showed a disorganized cytoskeleton, exhibited reduced vinculin staining, and were easily detached from the growing surface. They showed a marked increase in dihydroethidium staining, suggesting increased oxidative stress. The expression of phosphorylated extracellular signal-regulated kinase 1/2, cyclin D1/2, and vascular endothelial growth factor was markedly elevated in U251 O. The hyperproliferative and signaling effects seen in U251 O cells are abolished by selective CYP4A inhibition of 20-HETE formation with HET0016 [N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine], by small interfering RNA against the enzyme, and by the putative 20-HETE antagonist, 20-hydroxyeicosa-5(Z),14(Z)-dienoic acid. In vivo, implantation of U251O cells in the brain of nude rats resulted in a approximately 10-fold larger tumor volume (10 days postimplantation) compared with animals receiving mock-transfected U251 cells. These data show that elevations in 20-HETE synthesis in U251 cells lead to an increased growth both in vitro and in vivo. This suggests that 20-HETE may have proto-oncogenic properties in U251 human gliomas. Further studies are needed to determine whether 20-HETE plays a role promoting growth of some human gliomas.


Assuntos
Ácido Araquidônico/metabolismo , Citocromo P-450 CYP4A/fisiologia , Glioma/metabolismo , Glioma/patologia , Ácidos Hidroxieicosatetraenoicos/biossíntese , Adesão Celular , Ciclo Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Imageamento por Ressonância Magnética , Células-Tronco Neoplásicas , Estresse Oxidativo , Fenótipo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/fisiologia
18.
Sci Rep ; 7: 41809, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139732

RESUMO

Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM. Administration of a single IV dose resulted in 7-fold higher levels of HET0016 in plasma and 3.6-fold higher levels in tumor at 60 min than that in IP route. IV treatment with HPßCD-HET0016 decreased tumor growth, and altered vascular kinetics in early and late treatment groups (p < 0.05). Similar growth inhibition was observed in syngeneic GL261 GBM (p < 0.05). Survival studies using patient derived xenografts of GBM811, showed prolonged survival to 26 weeks in animals treated with focal radiation, in combination with HET0016 and TMZ (p < 0.05). We observed reduced expression of markers of cell proliferation (Ki-67), decreased neovascularization (laminin and αSMA), in addition to inflammation and angiogenesis markers in the treatment group (p < 0.05). Our results indicate that HPßCD-HET0016 is effective in inhibiting tumor growth through decreasing proliferation, and neovascularization. Furthermore, HPßCD-HET0016 significantly prolonged survival in PDX GBM811 model.


Assuntos
Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Glioblastoma/metabolismo , Glioblastoma/patologia , Actinas/metabolismo , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Modelos Animais de Doenças , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Humanos , Neovascularização Patológica/tratamento farmacológico , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Vascul Pharmacol ; 83: 57-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27084395

RESUMO

Angiogenesis is an important adaptation for recovery from peripheral ischemia. Here, we determined whether 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia-induced angiogenesis and assessed its underlying molecular and cellular mechanisms using a mouse hindlimb-ischemia angiogenesis model. Hindlimb blood flow was measured by Laser Doppler Perfusion Imaging and microvessel density was determined by CD31 and tomato lectin staining. We found that systemic and local administration of a 20-HETE synthesis inhibitor, DDMS, or a 20-HETE antagonist, 6,15-20-HEDGE significantly reduced blood flow recovery and microvessel formation in response to ischemia. 20-HETE production, measured by LC/MS/MS, was markedly increased in ischemic muscles (91±11 vs. 8±2pg/mg in controls), which was associated with prominent upregulation of the 20-HETE synthase, CYP4A12. Immunofluorescence co-localized increased CYP4A12 expression in response to ischemia to CD31-positive EC in the ischemic hindlimb microvessels. We further showed that ischemia increased HIF-1α, VEGF, and VEGFR2 expression in gracilis muscles and that these increases were negated by DDMS and 6,15-20-HEDGE. Lastly, we showed that ERK1/2 of MAPK is a component of 20-HETE regulated ischemic angiogenesis. Taken together, these data indicate that 20-HETE is a critical contributor of ischemia-induced angiogenesis in vivo.


Assuntos
Ácidos Hidroxieicosatetraenoicos/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Transdução de Sinais , Indutores da Angiogênese/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Velocidade do Fluxo Sanguíneo , Hipóxia Celular , Células Cultivadas , Família 4 do Citocromo P450/metabolismo , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Membro Posterior , Humanos , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Ácidos Hidroxieicosatetraenoicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Fluxo Sanguíneo Regional , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Onco Targets Ther ; 9: 1205-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022280

RESUMO

BACKGROUND: Due to the hypervascular nature of glioblastoma (GBM), antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N'-(4-butyl-2 methylphenyl)formamidine (HET0016), which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis. The aims of the studies were to determine 1) whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2) whether the treatment schedule would have a crucial impact on controlling GBM. METHODS: U251 human glioma cells (4×10(5)) were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8-21 days treatment) of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0-21 days treatment) was to mimic cases following radiation therapy or surgery. There were four different treatment groups: vehicle, vatalanib (oral treatment 50 mg/kg/d), HET0016 (intraperitoneal treatment 10 mg/kg/d), and combined (vatalanib and HET0016). Following scheduled treatments, all animals underwent magnetic resonance imaging on day 22, followed by euthanasia. Brain specimens were equally divided for immunohistochemistry and protein array analysis. RESULTS: Our results demonstrated a trend that HET0016, alone or in combination with vatalanib, is capable of controlling the tumor growth compared with that of vatalanib alone, indicating attenuation of the unwanted effect of vatalanib. When both vatalanib and HET0016 were administered together on the day of the tumor implantation (0-21 days treatment), tumor volume, tumor blood volume, permeability, extravascular and extracellular space volume, tumor cell proliferation, and cell migration were decreased compared with that of the vehicle-treated group. CONCLUSION: HET0016 is capable of controlling tumor growth and migration, but these effects are dependent on the timing of drug administration. The addition of HET0016 to vatalanib may attenuate the unwanted effect of vatalanib.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA