Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioelectrochemistry ; 156: 108628, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38104457

RESUMO

To enhance the sensitivity of flexible glucose sensors made with 3-aminophenylboronic acid and pyrrole as functional molecules and a carbon tri-electrode as substrate, graphene sponge (GS) and Prussian blue (PB) were used to enhance the charge transfer between the molecularly imprinted cavities and the electrodes. Electrochemical impedance spectroscopy and cyclic voltammetry showed that modifying the electrode with GS and PB significantly reduced the charge transfer impedance and increased the redox current of the sensor. The sensor has a sensitivity of up to 25.81 µA⋅loge (µM)-1⋅cm-2 for the detection of glucose using differential pulse voltammetry in the range of 7.78 to 600 µM, with a low detection limit of 1.08 µM (S/N = 3). When the pH varies in the range of 5.5 to 7.5, the sensor maintains a certain level of stability for glucose detection. The presence of lactic acid, urea, and ascorbic acid had minimal impact on glucose detection by the sensor. After 20 days of storage at room temperature, the sensor maintains 80 % efficiency. This study supports the development of wearable glucose sensors with high sensitivity, specificity, and stability through molecular imprinting.


Assuntos
Grafite , Impressão Molecular , Grafite/química , Carbono/química , Ferrocianetos/química , Impressão Molecular/métodos , Eletrodos , Glucose , Técnicas Eletroquímicas/métodos , Limite de Detecção
2.
Neurotherapeutics ; : e00383, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955643

RESUMO

Neuropathic pain (NP), a severe chronic pain condition, remains a substantial clinical challenge due to its complex pathophysiology and limited effective treatments. An association between the members of the Fibroblast Growth Factors (FGFs), particularly Fgf3, and the development of NP has become evident. In this study, utilizing a mouse model of NP, we observed a time-dependent increase in Fgf3 expression at both mRNA and protein levels within the dorsal root ganglia (DRG). Functional studies revealed that blocking Fgf3 expression mitigated nerve injury induced nociceptive hypersensitivity, suggesting its pivotal role in pain modulation. Moreover, our findings elucidate that Fgf3 contributes to pain hypersensitivity through the activation of the Akt/mTOR signaling in injured DRG neurons. These results not only shed light on the involvement of Fgf3 in nerve injury-induced NP but also highlight its potential as a promising therapeutic target for pain management. This study thereby advances our understanding of the molecular mechanisms underlying NP and opens new avenues for the development of effective treatment strategies.

3.
IEEE Trans Pattern Anal Mach Intell ; 46(6): 4115-4128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38285589

RESUMO

Human motion modeling is important for many modern graphics applications, which typically require professional skills. In order to remove the skill barriers for laymen, recent motion generation methods can directly generate human motions conditioned on natural languages. However, it remains challenging to achieve diverse and fine-grained motion generation with various text inputs. To address this problem, we propose MotionDiffuse, one of the first diffusion model-based text-driven motion generation frameworks, which demonstrates several desired properties over existing methods. 1) Probabilistic Mapping. Instead of a deterministic language-motion mapping, MotionDiffuse generates motions through a series of denoising steps in which variations are injected. 2) Realistic Synthesis. MotionDiffuse excels at modeling complicated data distribution and generating vivid motion sequences. 3) Multi-Level Manipulation. MotionDiffuse responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts. Our experiments show MotionDiffuse outperforms existing SoTA methods by convincing margins on text-driven motion generation and action-conditioned motion generation. A qualitative analysis further demonstrates MotionDiffuse's controllability for comprehensive motion generation.


Assuntos
Movimento , Humanos , Movimento/fisiologia , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Gráficos por Computador , Movimento (Física)
4.
ACS Synth Biol ; 13(7): 2081-2090, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38607270

RESUMO

Ectoine is a compatible solute that functions as a cell protector from various stresses, protecting cells and stabilizing biomolecules, and is widely used in medicine, cosmetics, and biotechnology. Microbial fermentation has been widely used for the large-scale production of ectoine, and a number of fermentation strategies have been developed to increase the ectoine yield, reduce production costs, and simplify the production process. Here, Corynebacterium glutamicum was engineered for ectoine production by heterologous expression of the ectoine biosynthesis operon ectBAC gene from Halomonas elongata, and a series of genetic modifications were implemented. This included introducing the de3 gene from Escherichia coli BL21 (DE3) to express the T7 promoter, eliminating the lysine transporter protein lysE to limit lysine production, and performing a targeted mutation lysCS301Y on aspartate kinase to alleviate feedback inhibition of lysine. The new engineered strain Ect10 obtained an ectoine titer of 115.87 g/L in an optimized fed-batch fermentation, representing the highest ectoine production level in C. glutamicum and achieving the efficient production of ectoine in a low-salt environment.


Assuntos
Diamino Aminoácidos , Corynebacterium glutamicum , Escherichia coli , Fermentação , Halomonas , Engenharia Metabólica , Diamino Aminoácidos/biossíntese , Diamino Aminoácidos/metabolismo , Diamino Aminoácidos/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Halomonas/genética , Halomonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Lisina/biossíntese , Regiões Promotoras Genéticas , Óperon/genética , Aspartato Quinase/genética , Aspartato Quinase/metabolismo , Sistemas de Transporte de Aminoácidos Básicos
5.
J Hazard Mater ; 472: 134519, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733790

RESUMO

Emerging contaminants (ECs) are increasingly recognized as a global threat to biodiversity and ecosystem health. However, the cumulative risks posed by ECs to aquatic organisms and ecosystems, as well as the influence of anthropogenic activities and natural factors on these risks, remain poorly understood. This study assessed the mixed risks of ECs in Dongting Lake, a Ramsar Convention-classified Typically Changing Wetland, to elucidate the major EC classes, key risk drivers, and magnitude of anthropogenic and natural impacts. Results revealed that ECs pose non-negligible acute (30% probability) and chronic (70% probability) mixed risks to aquatic organisms in the freshwater lake ecosystem, with imidacloprid identified as the primary pollutant stressor. Redundancy analysis (RDA) and structural equation modeling (SEM) indicated that cropland and precipitation were major drivers of EC contamination levels and ecological risk. Cropland was positively associated with EC concentrations, while precipitation exhibited a dilution effect. These findings provide critical insights into the ecological risk status and key risk drivers in a typical freshwater lake ecosystem, offering data-driven support for the control and management of ECs in China.


Assuntos
Lagos , Poluentes Químicos da Água , China , Poluentes Químicos da Água/análise , Medição de Risco , Rios/química , Monitoramento Ambiental , Neonicotinoides/análise , Neonicotinoides/toxicidade , Ecossistema , Nitrocompostos/análise , Organismos Aquáticos
6.
Rev Clin Esp (Barc) ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122177

RESUMO

AIMS: Coronary heart disease (CHD) patients with changed serum soluble receptor for advanced glycation end products (sRAGE) will experience microalbuminuria and even kidney dysfunction. However, the role of sRAGE for microalbuminuria in CHD is still not established. This study aimed to evaluate the association between sRAGE and early kidney dysfunction in CHD patients. MATERIALS AND METHODS: In this cross-sectional study, sRAGE and urinary albumin-to-creatinine ratio (uACR) were measured in hospitalized CHD patients who have undergone coronary arteriography to evaluate the distinction and correlation between sRAGE and uACR. RESULTS: There were 127 CHD patients (mean age: 63.06 ±â€¯10.93 years, 93 males) in the study, whose sRAGE were 1.83 ±â€¯0.64 µg/L. The sRAGE level was higher in kidney injury group (uACR ≥ 30 mg/g) compared with no kidney injury group (uACR < 30 mg/g) [(2.08 ±â€¯0.70 vs. 1.75 ±â€¯0.61) µg/L, P < 0.05]. Moreover, the positive correlation between serum sRAGE and uACR was significant in CHD patients (r = 0.196, P < 0.05). Binary logistic regression suggests sRAGE as a predictor for microalbuminuria in CHD patients [Odd Ratio = 2.62 (1.12-6.15), P < 0.05)]. The area under the receiver operating characteristic curve (AUC) of sRAGE is higher than that of the traditional indicators of renal function such as creatinine and estimated glomerular filtration rate, indicating sRAGE might have a good performance in evaluating early kidney injury in CHD patients [AUC is 0.660 (0.543-0.778), P < 0.01)]. CONCLUSIONS: Serum sRAGE was positively correlated to uACR and might serve as a potential marker to predict early kidney injury in CHD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA