Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Transl Med ; 20(1): 267, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690861

RESUMO

Heart failure (HF), as the leading cause of death, is continuing to increase along with the aging of the general population all over the world. Identification of diagnostic biomarkers for early detection of HF is considered as the most effective way to reduce the risk and mortality. Herein, we collected plasma samples from HF patients (n = 40) before and after medical therapy to determine the change of circulating miRNAs through a quantitative real-time PCR (QRT-PCR)-based miRNA screening analysis. miR-30a-5p and miR-654-5p were identified as the most significantly changed miRNAs in the plasma of patients upon treatment. In consistence, miR-30a-5p showed upregulation and miR-654-5p showed downregulation in the circulation of 30 HF patients, compared to 15 normal controls in the training phase, from which a two-circulating miRNA model was developed for HF diagnosis. Next, we performed the model validation using an independent cohort including 50 HF patients and 30 controls. As high as 98.75% of sensitivity and 95.00% of specificity were achieved. A comparison between the miRNA model and NT-pro BNP in diagnostic accuracy of HF indicated an upward trend of the miRNA model. Moreover, change of the two miRNAs was further verified in association with the therapeutic effect of HF patients, in which miR-30a-5p showed decrease while miR-654-5p showed increase in the plasma of patients after LVAD implantation. In conclusion, the current study not only identified circulating miR-654-5p for the first time as a novel biomarker of HF, but also developed a novel 2-circulating miRNA model with promising potentials for diagnosis and prognosis of HF patients, and in association with therapeutic effects as well.


Assuntos
MicroRNA Circulante , Insuficiência Cardíaca , MicroRNAs , Biomarcadores , Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , MicroRNAs/genética , Prognóstico
2.
Phys Rev Lett ; 124(17): 171101, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412296

RESUMO

The astrophysical reach of current and future ground-based gravitational-wave detectors is mostly limited by quantum noise, induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be an effective strategy to mitigate such quantum noise and it is currently used in advanced detectors. However, current squeezing cannot improve the noise across the whole spectrum because of the Heisenberg uncertainty principle: when shot noise at high frequencies is reduced, radiation pressure at low frequencies is increased. A broadband quantum noise reduction is possible by using a more complex squeezing source, obtained by reflecting the squeezed vacuum off a Fabry-Perot cavity, known as filter cavity. Here we report the first demonstration of a frequency-dependent squeezed vacuum source able to reduce quantum noise of advanced gravitational-wave detectors in their whole observation bandwidth. The experiment uses a suspended 300-m-long filter cavity, similar to the one planned for KAGRA, Advanced Virgo, and Advanced LIGO, and capable of inducing a rotation of the squeezing ellipse below 100 Hz.

3.
BMC Cancer ; 20(1): 627, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631271

RESUMO

BACKGROUND: Emerging evidence has demonstrated the limited access to metabolic substrates as an effective approach to block cancer cell growth. The mechanisms remain unclear. Our previous work has revealed that miR-221/222 plays important role in regulating breast cancer development and progression through interaction with target gene p27. RESULTS: Herein, we determined the miRNA-mRNA interaction in breast cancer cells under induced stress status of starvation. Starvation stimulation attenuated the miR-221/222-p27 interaction in MDA-MB-231 cells, thereby increased p27 expression and suppressed cell proliferation. Through overexpression or knockdown of miR-221/222, we found that starvation-induced stress attenuated the negative regulation of p27 expression by miR-221/222. Similar patterns for miRNA-target mRNA interaction were observed between miR-17-5p and CyclinD1, and between mR-155 and Socs1. Expression of Ago2, one of the key components of RNA-induced silencing complex (RISC), was decreased under starvation-induced stress status, which took responsibility for the impaired miRNA-target interaction since addition of exogenous Ago2 into MDA-MB-231 cells restored the miR-221/222-p27 interaction in starvation condition. CONCLUSIONS: We demonstrated the attenuated interaction between miR-221/222 and p27 by starvation-induced stress in MDA-MB-231 breast cancer cells. The findings add a new page to the general knowledge of negative regulation of gene expression by miRNAs, also demonstrate a novel mechanism through which limited access to nutrients suppresses cancer cell proliferation. These insights provide a basis for development of novel therapeutic options for breast cancer.


Assuntos
Neoplasias da Mama/genética , Jejum/fisiologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Estresse Fisiológico/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células/genética , Meios de Cultura/metabolismo , Ciclina D1/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , Proteína 1 Supressora da Sinalização de Citocina/genética
4.
Clin Sci (Lond) ; 134(7): 791-805, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32219337

RESUMO

The molecular mechanisms governing the secretion of the non-coding genome are poorly understood. We show herein that cyclin D1, the regulatory subunit of the cyclin-dependent kinase that drives cell-cycle progression, governs the secretion and relative proportion of secreted non-coding RNA subtypes (miRNA, rRNA, tRNA, CDBox, scRNA, HAcaBox. scaRNA, piRNA) in human breast cancer. Cyclin D1 induced the secretion of miRNA governing the tumor immune response and oncogenic miRNAs. miR-21 and miR-93, which bind Toll-Like Receptor 8 to trigger a pro-metastatic inflammatory response, represented >85% of the cyclin D1-induced secreted miRNA transcripts. Furthermore, cyclin D1 regulated secretion of the P-element Induced WImpy testis (PIWI)-interacting RNAs (piRNAs) including piR-016658 and piR-016975 that governed stem cell expansion, and increased the abundance of the PIWI member of the Argonaute family, piwil2 in ERα positive breast cancer. The cyclin D1-mediated secretion of pro-tumorigenic immuno-miRs and piRNAs may contribute to tumor initiation and progression.


Assuntos
Neoplasias da Mama/metabolismo , Ciclina D1/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Microambiente Celular , Ciclina D1/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/imunologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Transdução de Sinais
5.
Front Cell Infect Microbiol ; 13: 1190870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333844

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a lasting threat to public health. To minimize the viral spread, it is essential to develop more reliable approaches for early diagnosis of the infection and immediate suppression of the viral replication. Herein, through computational prediction of SARS-CoV-2 genome and screening analysis of specimens from covid-19 patients, we predicted 15 precursors for SARS-CoV-2-encoded miRNAs (CvmiRNAs) containing 20 mature CvmiRNAs, in which CvmiR-2 was successfully detected by quantitative analysis in both serum and nasal swab samples of patients. CvmiR-2 showed high specificity in distinguishing covid-19 patients from normal controls, and high conservation between SARS-CoV-2 and its mutants. A positive correlation was observed between the CvmiR-2 expression level and the severity of patients. The biogenesis and expression of CvmiR-2 were validated in the pre-CvmiR-2-transfected A549 cells, showing a dose-dependent pattern. The sequence of CvmiR-2 was validated by sequencing analysis of human cells infected by either SARS-CoV-2 or pre-CvmiR-2. Target gene prediction analysis suggested CvmiR-2 may be involved in the regulation of the immune response, muscle pain and/or neurological disorders in covid-19 patients. In conclusion, the current study identified a novel v-miRNA encoded by SARS-CoV-2 upon infection of human cells, which holds the potential to serve as a diagnostic biomarker or a therapeutic target in clinic.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Replicação Viral , Anticorpos Antivirais , Biomarcadores , Teste para COVID-19
6.
Theranostics ; 13(7): 2337-2349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153732

RESUMO

Emerging evidence has indicated the aberrant expression of PIWI-interacting RNAs (piRNAs) in human cancer cells to regulate tumor development and progression by governing cancer cell stemness. Herein, we identified downregulation of piR-2158 in human breast cancer tumors, especially in ALDH+ breast cancer stem cells (BCSCs) from patients and cell lines, which was further validated in two types of genetically engineered mouse models of breast cancer (MMTV-Wnt and MMTV-PyMT). Enforced overexpression of piR-2158 in basal-like or luminal subtypes of breast cancer cells suppressed cell proliferation, migration, epithelial-mesenchymal transition (EMT) and stemness in vitro. Administration of a dual mammary tumor-targeting piRNA delivery system in mice reduced tumor growth in vivo. RNA-seq, ChIP-seq and luciferase reporter assays demonstrated piR-2158 as a transcriptional repressor of IL11 by competing with AP-1 transcription factor subunit FOSL1 to bind the promoter of IL11. STAT3 signaling mediated piR-2158-IL11 regulation of cancer cell stemness and tumor growth. Moreover, by co-culturing of MDA-MB-231 and HUVECs in vitro and CD31 staining of tumor endothelial cells in vivo, we demonstrated inhibition of angiogenesis by piR-2158-IL11 in breast cancer. In conclusion, the current study not only reveals a novel mechanism through which piR-2158 inhibits mammary gland tumorigenesis via regulating cancer stem cells and tumor angiogenesis, but also provides a novel therapeutic strategy in treatment of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Interleucina-11/genética , Células Endoteliais/metabolismo , Transdução de Sinais , Mama/patologia , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
7.
Cancers (Basel) ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672487

RESUMO

Breast cancer is the most common cancer in women around the world. Emerging evidence has indicated the important roles that non-coding RNAs play in regulating tumor development and progression in breast cancer. Herein, we found a dual function of long non-coding RNA (LncRNA) CCAT2 in the luminal subtype of breast cancer, depending on its subcellular distribution. CCAT2 showed an overall downregulation in the tumor tissues from luminal breast cancer patients. Transient overexpression of CCAT2 in the luminal subtype of breast cancer cell MCF-7 or T47D significantly suppressed cell proliferation in vitro and inhibited tumor growth in vivo. Gene expression analysis of cancer stem cell markers including OCT4, NANOG, h-TERT, SOX2 and KLF4; flow cytometry analysis of breast cancer stem cell population, and mammosphere formation assay demonstrated inhibition of cancer cell stemness with transient transfection of CCAT2 in which exogenous CCAT2 mainly distributed in the cytoplasm and regulated miR-221-p27 signaling via RNA sequence interaction. However, overexpression of CCAT2 in MCF-7 cells through pMX retroviral nuclear expression vector accumulated CCAT2 in the nucleus, leading to upregulation of OCT4-PG1, a pseudogene of stem gene OCT4, thereby promoting the cancer cell stemness. In conclusion, the current study, for the first time, revealed a dual function of lncRNA CCAT2 as a tumor suppressor or oncogene depending upon its subcellular distribution. It also demonstrated the regulatory mechanism of cytoplasmic CCAT2 in suppressing tumorigenesis in the luminal subtype of breast cancer.

8.
J Exp Clin Cancer Res ; 42(1): 93, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081505

RESUMO

Malignant breast cancer (BC) remains incurable mainly due to the cancer cell metastasis, which is mostly related to the status of Estrogen receptor alpha (ERα). However, our understanding of the mechanisms through which ERα regulates cancer cell metastasis remains limited. Here we identified a miR-29a-PTEN-AKT axis as a downstream signaling pathway of ERα governing breast cancer progression and metastasis. Two estrogen response element (ERE) half sites were identified in the promoter and enhancer regions of miR-29a, which mediated transcriptional regulation of miR-29a by ERα. Low level of miR-29a showed association with reduced metastasis and better survival in ERα+ luminal subtype of BC. In contrast, high level of miR-29a was detected in ERα- triple negative breast cancer (TNBC) in association with distant metastasis and poor survival. miR-29a overexpression in BC tumors increased the number of circulating tumor cells and promoted lung metastasis in mice. Targeted knockdown of miR-29a in TNBC cells in vitro or administration of a nanotechnology-based anti-miR-29a delivery in TNBC tumor-bearing mice in vivo suppressed cellular invasion, EMT and lung metastasis. PTEN was identified as a direct target of miR-29a, inducing EMT and metastasis via AKT signaling. A small molecular inhibitor of AKT attenuated miR-29a-induced EMT. These findings demonstrate a novel mechanism responsible for ERα-regulated breast cancer metastasis, and reveal the combination of ERα status and miR-29a levels as a new risk indicator in BC.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Melanoma Maligno Cutâneo
9.
Cell Death Dis ; 13(4): 335, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410320

RESUMO

During the lifetime of females, mammary epithelial cells undergo cyclical expansion and proliferation depending on the cyclical activation of mammary gland stem/progenitor cells (MaSCs) in response to the change of hormone level. The structural shrink of mammary duct tree and the functional loss of mammary gland occur along with inactivation of MaSCs in old females, even leading to breast cancer occasionally. However, the gene expression signature in MaSCs across the lifespan remains unclear. Herein, we tested the tissue regeneration ability of CD24+CD49fhigh MaSCs over six time points from neonatal (4-day-old) to aged mice (360-day-old). Further RNA-seq analyses identified four clusters of gene signatures based on the gene expression patterns. A subset of stemness-related genes was identified, showing the highest level at day 4 of the neonatal age, and the lowest level at the old age. We also identified an aging-related gene signature showing significant change in the old mice, in which an association between aging process and stemness loss was indicated. The aging-related gene signature showed regulation of cancer signaling pathways, as well as aging-related diseases including Huntington disease, Parkinson disease, and Alzheimer disease. Moreover, 425, 1056, 418, and 1107 gene variants were identified at D20, D40, D90, and D180, respectively, which were mostly reported to associated with tumorigenesis and metastasis in cancer. In summary, the current study is the first to demonstrate the gene expression shift in MaSCs from neonatal to aging, which leads to stemness loss, aging, aging-related diseases, and even breast cancer in old mice.


Assuntos
Glândulas Mamárias Animais , Transcriptoma , Animais , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Camundongos , Células-Tronco/metabolismo , Transcriptoma/genética
10.
Cell Death Dis ; 12(11): 987, 2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34689156

RESUMO

Excess mental stress may harm health, and even accelerate cancer initiation and progression. One fourth of breast cancer patients suffer mental stress including anxiety, sadness, or depression, which negatively affect prognosis and survival. However, the regulatory mechanism is yet to be determined. Herein, we applied unpredictable stress stimuli to the breast tumor-bearing mice to establish a xenograft model of breast cancer suffering mental stress, followed by behavioral tests, tumor growth tracking, immune analysis, miRNA screening, and tumor cell proliferation analysis as well. As a result, increased stress hormone levels in serum, decreased percentage of T and NK cells in both blood and tumor samples and accelerated tumor growth in vivo were observed in the mice exposed to mental stress. Promoted cell proliferation was observed in both primary tumor cells derived from the stressed mice and 4T1 breast cancer cells treated with stress hormone corticosterone. In addition, a subset of miRNAs including miR-326, 346, 493, 595, 615, and 665 were identified through a miRNA screening with downregulation in tumors of the stressed mice. CCND1 was identified as a common target gene of miR-346 and miR-493, the top two most significantly downregulated miRNAs by stress exposure. The stress-miRNA-CCND1 signaling regulation of the tumor cell proliferation was further validated in 4T1 cells treated with corticosterone in vitro. GO terms and KEGG pathways analyses on the target genes of miR-346 and miR-493 revealed their involvement in the regulation of human cancer and neuron system, indicating the importance of non-coding genome in mediating the mental stress-induced cancer regulation. In conclusion, this study not only explored immune and nonimmune mechanisms through which mental stress exposure contributes to tumor growth in breast cancer, but also suggested a new therapeutic strategy for cancer patients suffering mental stress.


Assuntos
Neoplasias da Mama/imunologia , Estresse Psicológico/complicações , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Prognóstico , Estresse Psicológico/psicologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Cell Dev Biol ; 9: 641052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791297

RESUMO

Cancer stem cells (CSCs) are believed to be the main source of cancer relapse and metastasis. PIWI-interacting small non-coding RNAs (piRNAs) have been recently recognized to be relevant to cancer biology. Whether and how piRNAs regulate human CSCs remain unknown. Herein, upregulation of piR-823 was identified in tested luminal breast cancer cells, especially in the luminal subtype of breast CSCs. Enforced expression or targeted knockdown of piR-823 demonstrated its oncogenic function in regulating cell proliferation and colony formation in MCF-7 and T-47D breast cancer cells. In addition, piR-823 induced ALDH (+) breast CSC subpopulation promoted the expression of stem cell markers including OCT4, SOX2, KLF4, NANOG, and hTERT, and increased mammosphere formation. Tail vein injection of magnetic nanoparticles carrying anti-piR-823 into the mammary gland of tumor-burdened mice significantly inhibited tumor growth in vivo. DNA methyltransferases (DNMTs) including DNMT1, DNMT3A, and DNMT3B were demonstrated to be the downstream genes of piR-823, which regulate gene expression by maintaining DNA methylation. piR-823 increased the expression of DNMTs, promoted DNA methylation of gene adenomatous polyposis coli (APC), thereby activating Wnt signaling and inducing cancer cell stemness in the luminal subtype of breast cancer cells. The current study not only revealed a novel mechanism through which piRNAs contribute to tumorigenesis in breast cancer by regulating CSCs, but also provided a therapeutic strategy using non-coding genomes in the suppression of human breast cancer.

12.
Front Cell Dev Biol ; 9: 663279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959615

RESUMO

Cancer stem cells (CSCs) contribute to the cancer initiation, metastasis and drug resistance in non-small cell lung cancer (NSCLC). Herein, we identified a miR-221/222 cluster as a novel regulator of CSCs in NSCLC. Targeted overexpression or knockdown of miR-221/222 in NSCLC cells revealed the essential roles of miR-221/222 in regulation of lung cancer cell proliferation, mammosphere formation, subpopulation of CD133+ CSCs and the expression of stemness genes including OCT4, NANOG and h-TERT. The in vivo animal study showed that overexpression of miR-221/222 significantly enhanced the capacity of lung cancer cells to develop tumor and grow faster, indicating the importance of miR-221/222 in tumorigenesis and tumor growth. Mechanistically, Reck was found to be a key direct target gene of miR-221/222 in NSCLC. Overexpression of miR-221/222 significantly suppressed Reck expression, activated Notch1 signaling and increased the level of NICD. As an activated form of Notch1, NICD leads to enhanced stemness in NSCLC cells. In addition, knockdown of Reck by siRNA not only mimicked miR-221/222 effects, but also demonstrated involvement of Reck in the miR-221/222-induced activation of Notch1 signaling, verifying the essential roles of the miR-221/222-Reck-Notch1 axis in regulating stemness of NSCLC cells. These findings uncover a novel mechanism by which lung CSCs are significantly manipulated by miR-221/222, and provide a potential therapeutic target for the treatment of NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA