Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Psychiatry ; 27(9): 3807-3820, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35388184

RESUMO

Major depressive disorder is viewed as a 'circuitopathy'. The hippocampal-entorhinal network plays a pivotal role in regulation of depression, and its main sensory output, the visual cortex, is a promising target for stimulation therapy of depression. However, whether the entorhinal-visual cortical pathway mediates depression and the potential mechanism remains unknown. Here we report a cortical circuit linking entorhinal cortex layer Va neurons to the medial portion of secondary visual cortex (Ent→V2M) that bidirectionally regulates depression-like behaviors in mice. Analyses of brain-wide projections of Ent Va neurons and two-color retrograde tracing indicated that Ent Va→V2M projection neurons represented a unique population of neurons in Ent Va. Immunostaining of c-Fos revealed that activity in Ent Va neurons was decreased in mice under chronic social defeat stress (CSDS). Both chemogenetic inactivation of Ent→V2M projection neurons and optogenetic inactivation of the projection terminals induced social deficiency, anxiety- and despair-related behaviors in healthy mice. Chemogenetic inactivation of Ent→V2M projection neurons also aggravated these depression-like behaviors in CSDS-resilient mice. Optogenetic activation of Ent→V2M projection terminals rapidly ameliorated depression-like phenotypes. Optical recording using fiber photometry indicated that elevated neural activity in Ent→V2M projection terminals promoted antidepressant-like behaviors. Thus, the Ent→V2M circuit plays a crucial role in regulation of depression-like behaviors, and can function as a potential target for treating major depressive disorder.


Assuntos
Transtorno Depressivo Maior , Córtex Visual , Animais , Camundongos , Depressão , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Estresse Psicológico , Camundongos Endogâmicos C57BL
2.
Nature ; 545(7653): 181-186, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467817

RESUMO

Persistent neural activity maintains information that connects past and future events. Models of persistent activity often invoke reverberations within local cortical circuits, but long-range circuits could also contribute. Neurons in the mouse anterior lateral motor cortex (ALM) have been shown to have selective persistent activity that instructs future actions. The ALM is connected bidirectionally with parts of the thalamus, including the ventral medial and ventral anterior-lateral nuclei. We recorded spikes from the ALM and thalamus during tactile discrimination with a delayed directional response. Here we show that, similar to ALM neurons, thalamic neurons exhibited selective persistent delay activity that predicted movement direction. Unilateral photoinhibition of delay activity in the ALM or thalamus produced contralesional neglect. Photoinhibition of the thalamus caused a short-latency and near-complete collapse of ALM activity. Similarly, photoinhibition of the ALM diminished thalamic activity. Our results show that the thalamus is a circuit hub in motor preparation and suggest that persistent activity requires reciprocal excitation across multiple brain areas.


Assuntos
Córtex Motor/fisiologia , Tálamo/fisiologia , Animais , Feminino , Masculino , Camundongos , Córtex Motor/citologia , Movimento/fisiologia , Neurônios/fisiologia , Tálamo/citologia , Tato/fisiologia
3.
Biochem Biophys Res Commun ; 553: 107-113, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33765554

RESUMO

Chronic social defeat stress (CSDS) is widely applied to study of depression in rodents. 10-day CSDS was a most commonly employed paradigm but with high resilience ratio (∼30%), producing potential variation in depression-like behavioral symptoms. Whether prolonged period (21 days) of CSDS would promote less resilience and reduce behavioral variability remains unknown. We applied 10-day and 21-day CSDS paradigms to induce mouse model of depression and compared their resilience ratio and behavioral phenotypes. Mice under 21-day CSDS had significantly lower resilience ratio and greater changes in behavioral indicators relative to mice under 10-day CSDS. Behavioral indicators from 21-day CSDS paradigm had higher correlations and better prediction for susceptibility which indicating higher uniformity in behavioral phenotypes. Furthermore, a subset of behavioral indicators in 21-day CSDS had high prediction efficacy and should be first applied to screen susceptibility of CSDS. Thus, our study demonstrates that 21-day CSDS is a more robust paradigm inducing reliable depression-like behaviors relative to 10-day CSDS, and should be preferentially used in rodent studies of depression.


Assuntos
Depressão/psicologia , Resiliência Psicológica , Derrota Social , Estresse Psicológico/psicologia , Animais , Doença Crônica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
4.
Nature ; 519(7541): 51-6, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25731172

RESUMO

Activity in motor cortex predicts specific movements seconds before they occur, but how this preparatory activity relates to upcoming movements is obscure. We dissected the conversion of preparatory activity to movement within a structured motor cortex circuit. An anterior lateral region of the mouse cortex (a possible homologue of premotor cortex in primates) contains equal proportions of intermingled neurons predicting ipsi- or contralateral movements, yet unilateral inactivation of this cortical region during movement planning disrupts contralateral movements. Using cell-type-specific electrophysiology, cellular imaging and optogenetic perturbation, we show that layer 5 neurons projecting within the cortex have unbiased laterality. Activity with a contralateral population bias arises specifically in layer 5 neurons projecting to the brainstem, and only late during movement planning. These results reveal the transformation of distributed preparatory activity into movement commands within hierarchically organized cortical circuits.


Assuntos
Córtex Motor/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia , Animais , Comportamento Animal/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Eletrofisiologia , Camundongos , Córtex Motor/citologia , Vias Neurais/citologia , Células Piramidais/citologia , Células Piramidais/fisiologia
5.
Rev Esp Enferm Dig ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33200614

RESUMO

Ahead of Print article withdrawn by publisher. OBJECTIVES: This study was designed to investigate the effects of carvedilol on the expression of TLR4 and its downstream signaling pathway in liver tissue of rats with cholestatic liver fibrosis, and provided experimental evidence for clinical treatment of liver fibrosis with carvedilol.? METHODS: A total of fifty male Sprague Dawley rats were randomly divided into five groups (10 rats per group): sham surgery control group, bile duct ligation (BDL) model group, low-dose carvedilol treatment group (0.1mgkg-1d-1), medium-dose carvedilol treatment group (1mgkg-1d-1), high-dose carvedilol treatment group (10mgkg-1d-1). Rat hepatic fibrosis model was established by applying BDL. Forty-eight hours after the operation, carvedilol was administered twice a day. The blood and liver were simultaneously collected under the aseptic condition for further detection in two weeks after operation.? RESULTS: Compared with the sham group, the BDL group showed obvious liver injury, increased levels of inflammatory factors, and continued progression of liver fibrosis. Carvedilol could alleviate the above changes. The improvement effects were augmenting as dosages increasing. In addition, compared with the BDL group, carvedilol can reduce the expressions of TLR4, MyD88 and NF-?B p65 in liver tissue and increase the expression of ?-arrestin2, and the effect in the high dose group was more obvious. CONCLUSIONS: Carvedilol can reduce the release of inflammatory mediators by down-regulating TLR4 expression and inhibiting its downstream signaling pathway, thus playing a therapeutic role in cholestatic liver fibrosis.

7.
Nature ; 490(7419): 273-7, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23000898

RESUMO

Animals locate and track chemoattractive gradients in the environment to find food. With its small nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behaviour. Extensive work on the nematode has identified the neurons that are necessary for the different locomotory behaviours underlying chemotaxis through the use of laser ablation, activity recording in immobilized animals and the study of mutants. However, we do not know the neural activity patterns in C. elegans that are sufficient to control its complex chemotactic behaviour. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behaviour. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behaviour. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair (AIY) was sufficient to force the animal to locate, turn towards and track virtual light gradients. Two distinct activity patterns triggered in AIY as the animal moved through the gradient controlled reversals and gradual turns to drive chemotactic behaviour. Because AIY neurons are post-synaptic to most chemosensory and thermosensory neurons, it is probable that these activity patterns in AIY have an important role in controlling and coordinating different taxis behaviours of the animal.


Assuntos
Caenorhabditis elegans/fisiologia , Quimiotaxia/fisiologia , Animais , Comportamento Animal/fisiologia , Estimulação Elétrica , Interneurônios/fisiologia , Neurônios/fisiologia
8.
J Nanosci Nanotechnol ; 18(7): 4904-4909, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442672

RESUMO

A one-dimensional hierarchical Ag nanoparticle (AgNP)/MnO2 nanorod (MND) nanocomposite was synthesized by combining a simple solvothermal method and a facile reduction approach in situ. Owing to its high electrical conductivity, the resulting AgNP/MND nanocomposite displayed a high specific capacitance of 314 F g-1 at a current density of 2 A g-1, which was much higher than that of pure MNDs (178 F g-1). Resistances of the electrolyte (Rs) and charge transportation (Rct) of the nanocomposite were much lower than that of pure MNDs. Moreover, the nanocomposite exhibited outstanding long-term cycling ability (9% loss of initial capacity after 1000 cycles). These results indicated that the nanocomposite could serve as a promising and useful electrode material for future energy-storage applications.

10.
Neuron ; 112(8): 1222-1234, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38458199

RESUMO

On the surface, the two hemispheres of vertebrate brains look almost perfectly symmetrical, but several motor, sensory, and cognitive systems show a deeply lateralized organization. Importantly, the two hemispheres are connected by various commissures, white matter tracts that cross the brain's midline and enable cross-hemispheric communication. Cross-hemispheric communication has been suggested to play an important role in the emergence of lateralized brain functions. Here, we review current advances in understanding cross-hemispheric communication that have been made using modern neuroscientific tools in rodents and other model species, such as genetic labeling, large-scale recordings of neuronal activity, spatiotemporally precise perturbation, and quantitative behavior analyses. These findings suggest that the emergence of lateralized brain functions cannot be fully explained by largely static factors such as genetic variation and differences in structural brain asymmetries. In addition, learning-dependent asymmetric interactions between the left and right hemispheres shape lateralized brain functions.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Substância Branca , Lateralidade Funcional/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico
11.
Nat Biomed Eng ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902522

RESUMO

Exploring the relationship between neuronal dynamics and ethologically relevant behaviour involves recording neuronal-population activity using technologies that are compatible with unrestricted animal behaviour. However, head-mounted microscopes that accommodate weight limits to allow for free animal behaviour typically compromise field of view, resolution or depth range, and are susceptible to movement-induced artefacts. Here we report a miniaturized head-mounted fluorescent mesoscope that we systematically optimized for calcium imaging at single-neuron resolution, for increased fields of view and depth of field, and for robustness against motion-generated artefacts. Weighing less than 2.5 g, the mesoscope enabled recordings of neuronal-population activity at up to 16 Hz, with 4 µm resolution over 300 µm depth-of-field across a field of view of 3.6 × 3.6 mm2 in the cortex of freely moving mice. We used the mesoscope to record large-scale neuronal-population activity in socially interacting mice during free exploration and during fear-conditioning experiments, and to investigate neurovascular coupling across multiple cortical regions.

12.
Nat Methods ; 6(12): 891-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19898486

RESUMO

The nematode Caenorhabditis elegans has a compact nervous system with only 302 neurons. Whereas most of the synaptic connections between these neurons have been identified by electron microscopy serial reconstructions, functional connections have been inferred between only a few neurons through combinations of electrophysiology, cell ablation, in vivo calcium imaging and genetic analysis. To map functional connections between neurons, we combined in vivo optical stimulation with simultaneous calcium imaging. We analyzed the connections from the ASH sensory neurons and RIM interneurons to the command interneurons AVA and AVD. Stimulation of ASH or RIM neurons using channelrhodopsin-2 (ChR2) resulted in activation of AVA neurons, evoking an avoidance behavior. Our results demonstrate that we can excite specific neurons expressing ChR2 while simultaneously monitoring G-CaMP fluorescence in several other neurons, making it possible to rapidly decipher functional connections in C. elegans neural circuits.


Assuntos
Caenorhabditis elegans/fisiologia , Óptica e Fotônica , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia
13.
Cell Rep ; 40(7): 111190, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977520

RESUMO

Despite essentially symmetric structures in mammalian brains, the left and right hemispheres do not contribute equally to certain cognitive functions. How both hemispheres interact to cause this asymmetry remains unclear. Here, we study this question in the anterior lateral motor cortex (ALM) of mice performing five versions of a tactile-based decision-making task with a short-term memory (STM) component. Unilateral inhibition of ALM produces variable behavioral deficits across tasks, with the left, right, or both ALMs playing critical roles in STM. Neural activity and its encoding capability are similar across hemispheres, despite that only one hemisphere dominates in behavior. Inhibition of the dominant ALM disrupts encoding capability in the non-dominant ALM, but not vice versa. Variable behavioral deficits are predicted by the influence on contralateral activity across sessions, mice, and tasks. Together, these results reveal that the left and right ALM interact asymmetrically, leading to their differential contributions to STM.


Assuntos
Memória de Curto Prazo , Córtex Motor , Animais , Encéfalo , Mamíferos , Camundongos , Córtex Motor/fisiologia , Tato/fisiologia
14.
Elife ; 112022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36196992

RESUMO

Dynamic Ca2+ signals reflect acute changes in membrane excitability, and also mediate signaling cascades in chronic processes. In both cases, chronic Ca2+ imaging is often desired, but challenged by the cytotoxicity intrinsic to calmodulin (CaM)-based GCaMP, a series of genetically-encoded Ca2+ indicators that have been widely applied. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging of cortical neurons, where GCaMP-X by design is to eliminate the unwanted interactions between the conventional GCaMP and endogenous (apo)CaM-binding proteins. By expressing in adult mice at high levels over an extended time frame, GCaMP-X showed less damage and improved performance in two-photon imaging of sensory (whisker-deflection) responses or spontaneous Ca2+ fluctuations, in comparison with GCaMP. Chronic Ca2+ imaging of one month or longer was conducted for cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients progressively developed into autonomous/global Ca2+ oscillations. Along with the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined. Dysregulations of both neuritogenesis and Ca2+ oscillations became discernible around 2-3 weeks after virus injection or drug induction to express GCaMP in newborn or mature neurons, which were exacerbated by stronger or prolonged expression of GCaMP. In contrast, neurons expressing GCaMP-X were significantly less damaged or perturbed, altogether highlighting the unique importance of oscillatory Ca2+ to neural development and neuronal health. In summary, GCaMP-X provides a viable solution for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.


Assuntos
Sinalização do Cálcio , Cálcio , Animais , Camundongos , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neurônios/fisiologia , Calmodulina/genética , Calmodulina/metabolismo
15.
Neuron ; 109(21): 3486-3499.e7, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34469773

RESUMO

Persistent activity underlying short-term memory encodes sensory information or instructs specific future movement and, consequently, has a crucial role in cognition. Despite extensive study, how the same set of neurons respond differentially to form selective persistent activity remains unknown. Here, we report that the cortico-basal ganglia-thalamo-cortical (CBTC) circuit supports the formation of selective persistent activity in mice. Optogenetic activation or inactivation of the basal ganglia output nucleus substantia nigra pars reticulata (SNr)-to-thalamus pathway biased future licking choice, without affecting licking execution. This perturbation differentially affected persistent activity in the frontal cortex and selectively modulated neural trajectory that encodes one choice but not the other. Recording showed that SNr neurons had selective persistent activity distributed across SNr, but with a hotspot in the mediolateral region. Optogenetic inactivation of the frontal cortex also differentially affected persistent activity in the SNr. Together, these results reveal a CBTC channel functioning to produce selective persistent activity underlying short-term memory.


Assuntos
Memória de Curto Prazo , Parte Reticular da Substância Negra , Animais , Gânglios da Base/fisiologia , Camundongos , Vias Neurais/fisiologia , Parte Reticular da Substância Negra/fisiologia , Substância Negra/fisiologia , Tálamo/fisiologia
16.
J Colloid Interface Sci ; 581(Pt B): 485-495, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810725

RESUMO

Layered double hydroxides (LDHs) have been considered as one class of promising active electrode materials for supercapacitors due to their tunable composition and chemical versatility. Nonetheless, the poor electrical conductivity hinders their further practical applications in supercapacitors. Herein, CoAl LDH flower-like hollow microspheres are decorated with Ag nanoparticles by a facile one-step solvothermal reaction, followed by chemical bath deposition reaction. Experimental results and theoretical calculations indicate that decorating Ag nanoparticles onto CoAl LDH not only reduces the energy band gap and enhances their electrical conductivity, but also promotes fast diffusion kinetics of electrolyte ions and electrochemical reaction activity. Consequently, the prepared Ag/CoAl LDH electrode demonstrates improved specific capacities of 1214 (825) C g-1 at 3 (30) A g-1 and 91% capacity retention over 10,000 cycles at 10 A g-1 compared to the pristine CoAl LDH electrode. Moreover, using Ag/CoAl LDH and N-doped carbon nanotubes as the positive and negative electrodes, respectively, the assembled hybrid capacitor device delivers an energy density of 61.2 Wh kg-1 at a power density of 800 W kg-1. This work may showcase a great promise of engineering conductive nanoparticles-decorated LDHs-based active materials towards high-performance supercapacitors.

17.
Front Neuroanat ; 15: 732464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630049

RESUMO

Whole-brain imaging has become an increasingly important approach to investigate neural structures, such as somata distribution, dendritic morphology, and axonal projection patterns. Different structures require whole-brain imaging at different resolutions. Thus, it is highly desirable to perform whole-brain imaging at multiple scales. Imaging a complete mammalian brain at synaptic resolution is especially challenging, as it requires continuous imaging from days to weeks because of the large number of voxels to sample, and it is difficult to acquire a constant quality of imaging because of light scattering during in toto imaging. Here, we reveal that light-sheet microscopy has a unique advantage over wide-field microscopy in multi-scale imaging because of its decoupling of illumination and detection. Based on this observation, we have developed a multi-scale light-sheet microscope that combines tiling of light-sheet, automatic zooming, periodic sectioning, and tissue expansion to achieve a constant quality of brain-wide imaging from cellular (3 µm × 3 µm × 8 µm) to sub-micron (0.3 µm × 0.3 µm × 1 µm) spatial resolution rapidly (all within a few hours). We demonstrated the strength of the system by testing it using mouse brains prepared using different clearing approaches. We were able to track electrode tracks as well as axonal projections at sub-micron resolution to trace the full morphology of single medial prefrontal cortex (mPFC) neurons that have remarkable diversity in long-range projections.

18.
Cell Rep Methods ; 1(6): 100089, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35474896

RESUMO

Understanding brain functions requires detailed knowledge of long-range connectivity through which different areas communicate. A key step toward illuminating the long-range structures is to image the whole brain at synaptic resolution to trace axonal arbors of individual neurons to their termini. However, high-resolution brain-wide imaging requires continuous imaging for many days to sample over 10 trillion voxels, even in the mouse brain. Here, we have developed a sparse imaging and reconstruction tomography (SMART) system that allows brain-wide imaging of cortical projection neurons at synaptic resolution in about 20 h, an order of magnitude faster than previous methods. Analyses of morphological features reveal that single cortical neurons show remarkable diversity in local and long-range projections, with prefrontal, premotor, and visual neurons having distinct distribution of dendritic and axonal features. The fast imaging system and diverse projection patterns of individual neurons highlight the importance of high-resolution brain-wide imaging in revealing full neuronal morphology.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Encéfalo/diagnóstico por imagem , Axônios/fisiologia , Tomografia , Neuroimagem
19.
Neuron ; 107(6): 1080-1094.e5, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32702287

RESUMO

Neural activity in the corticothalamic network is crucial for sensation, memory, decision, and action. Nevertheless, a systematic characterization of corticothalamic functional connectivity has not been achieved. Here, we developed a high throughput method to systematically map functional connections from the dorsal cortex to the thalamus in awake mice by combing optogenetic inactivation with multi-channel recording. Cortical inactivation resulted in a rapid reduction of thalamic activity, revealing topographically organized corticothalamic excitatory inputs. Cluster analysis showed that groups of neurons within individual thalamic nuclei exhibited distinct dynamics. The effects of inactivation evolved with time and were modulated by behavioral states. Furthermore, we found that a subset of thalamic neurons received convergent inputs from widespread cortical regions. Our results present a framework for collecting, analyzing, and presenting large electrophysiological datasets with region-specific optogenetic perturbations and serve as a foundation for further investigation of information processing in the corticothalamic pathway.


Assuntos
Conectoma , Técnicas de Rastreamento Neuroanatômico/métodos , Optogenética/métodos , Córtex Somatossensorial/citologia , Tálamo/citologia , Animais , Feminino , Masculino , Camundongos , Condução Nervosa , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia
20.
Curr Mol Med ; 20(9): 708-716, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32077825

RESUMO

OBJECTIVES: This study was designed to investigate the effects of carvedilol on the expression of TLR4 and its downstream signaling pathway in the liver tissues of rats with cholestatic liver fibrosis and provide experimental evidence for clinical treatment of liver fibrosis with carvedilol. METHODS: A total of fifty male Sprague Dawley rats were randomly divided into five groups (10 rats per group): sham operation (SHAM) control group, bile duct ligation (BDL) model group, low-dose carvedilol treatment group (0.1mg·kg-1·d-1), medium-dose carvedilol treatment group (1mg·kg-1·d-1), and high-dose carvedilol treatment group (10mg·kg-1·d-1). Rat hepatic fibrosis model was established by applying BDL. Forty-eight hours after the operation, carvedilol was administered twice a day. The blood and liver were simultaneously collected under the aseptic condition for further detection in two weeks after the operation. The alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil) and albumin (Alb) in serum were measured. HE and Masson staining were used to determine hepatic fibrosis degree. Hydroxyproline assay was employed to detect liver collagen synthesis. Western Blot was used to measure the expression of TLR4, NF-κB p65 and ß-arrestin2 protein. Quantitative analysis of TLR4, MyD88, TNF-α and IL-6 mRNA was performed by Realtime-PCR. RESULTS: Compared with the SHAM group, the BDL group showed obvious liver injury, increased levels of inflammatory factors, and continued progression of liver fibrosis. The above changes in the BDL group were alleviated in the carvedilol treatment groups. The improvement effects augmented as dosages increased. In addition, compared with the BDL group, the reduction of the expressions of TLR4, MyD88 and NF-κB p65 in liver tissues and the increase of the expression of ß -arrestin2 in the high-dose carvedilol group were more significant. CONCLUSION: Carvedilol can reduce the release of inflammatory mediators by downregulating TLR4 expression and inhibiting its downstream signaling pathway, thus playing a potential therapeutic role in cholestatic liver fibrosis.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Colestase/metabolismo , Cirrose Hepática/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Colestase/tratamento farmacológico , Colestase/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Masculino , NF-kappa B/genética , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA