Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Structure ; 9(12): 1143-52, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11738041

RESUMO

BACKGROUND: Glycogen synthase kinase-3 (GSK-3) sequentially phosphorylates four serine residues on glycogen synthase (GS), in the sequence SxxxSxxxSxxx-SxxxS(p), by recognizing and phosphorylating the first serine in the sequence motif SxxxS(P) (where S(p) represents a phosphoserine). FRATtide (a peptide derived from a GSK-3 binding protein) binds to GSK-3 and blocks GSK-3 from interacting with Axin. This inhibits the Axin-dependent phosphorylation of beta-catenin by GSK-3. RESULTS: Structures of uncomplexed Tyr216 phosphorylated GSK-3beta and of its complex with a peptide and a sulfate ion both show the activation loop adopting a conformation similar to that in the phosphorylated and active forms of the related kinases CDK2 and ERK2. The sulfate ion, adjacent to Val214 on the activation loop, represents the binding site for the phosphoserine residue on 'primed' substrates. The peptide FRATtide forms a helix-turn-helix motif in binding to the C-terminal lobe of the kinase domain; the FRATtide binding site is close to, but does not obstruct, the substrate binding channel of GSK-3. FRATtide (and FRAT1) does not inhibit the activity of GSK-3 toward GS. CONCLUSIONS: The Axin binding site on GSK-3 presumably overlaps with that for FRATtide; its proximity to the active site explains how Axin may act as a scaffold protein promoting beta-catenin phosphorylation. Tyrosine 216 phosphorylation can induce an active conformation in the activation loop. Pre-phosphorylated substrate peptides can be modeled into the active site of the enzyme, with the P1 residue occupying a pocket partially formed by phosphotyrosine 216 and the P4 phosphoserine occupying the 'primed' binding site.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas do Citoesqueleto/química , Peptídeos/química , Proteínas Proto-Oncogênicas/química , Proteínas Repressoras , Transativadores , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteína Axina , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Cristalografia por Raios X , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática , Quinase 3 da Glicogênio Sintase , Quinases da Glicogênio Sintase , Insetos , Cinética , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Homologia de Sequência de Aminoácidos , Serina/química , Especificidade por Substrato , beta Catenina
2.
Neuroscience ; 319: 134-45, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26826333

RESUMO

It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior.


Assuntos
Dronabinol/farmacologia , Atividade Motora/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Psicotrópicos/farmacologia , Animais , Estimulação Elétrica , Membro Anterior , Masculino , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA