Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Soc Rev ; 39(3): 1153-82, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20179830

RESUMO

This critical review summarizes developments in microfluidic platforms that enable the miniaturization, integration, automation and parallelization of (bio-)chemical assays (see S. Haeberle and R. Zengerle, Lab Chip, 2007, 7, 1094-1110, for an earlier review). In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the easy, fast, and cost-efficient implementation of different application-specific (bio-)chemical processes. In our review we focus on recent developments from the last decade (2000s). We start with a brief introduction into technical advances, major market segments and promising applications. We continue with a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations of every platform. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electrokinetics, electrowetting, surface acoustic waves, and dedicated systems for massively parallel analysis. This review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposability, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols (295 references).


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microfluídica/métodos , Animais , Bovinos , Endotélio/química
2.
Lab Chip ; 9(24): 3599-603, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20024042

RESUMO

We designed and experimentally validated a new type of passive valve for centrifugal microfluidic platforms. A liquid column entering an unvented receiving chamber is stopped by the counter-pressure of compressed air. This valve opens under defined conditions at high centrifugal frequencies at which the interface between liquid and air becomes unstable and enables a phase exchange, forwarding the liquid. Burst frequencies of the valve were determined for liquids typically used in biochemical assays: pure water, water with detergent concentrations between 0.01 and 10%, and pure ethanol. Burst frequencies between 8.5 +/- 0.6 and 27.9 +/- 2.0 Hz were measured for different surface tensions. The burst frequencies can be tuned by simple geometrical changes in the valving structure. The valve does not require ultra-precise structures or local surface modifications and is therefore ideal for low-cost microfluidic polymer disks. Potential applications are in the field of multiparameter and panel analysis, such as PCR-genotyping.

3.
J Microencapsul ; 25(4): 267-74, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18465307

RESUMO

This study presents a novel method for the direct, centrifugally induced fabrication of small, Ca2+-hardened alginate beads at polymer-tube micronozzles. The bead diameter can arbitrarily be adjusted between 180-800 microm by the nozzle geometry and spinning frequencies between 5-28 Hz. The size distribution of the main peak features a CV of 7-16%, only. Up to 600 beads per second and channel are issued from the micronozzle through an air gap towards the curing agent contained in a standard lab tube ('Eppi'). Several tubes can be mounted on a 'flying bucket' rotor where they align horizontally under rotation and return to a vertical position as soon as the rotor is at rest. The centrifugally induced, ultra-high artificial gravity conditions (up to 180 g) even allow the micro-encapsulation of alginate solutions displaying viscosities up to 50 Pa s, i.e. approximately 50,000 times the viscosity of water! With this low cost technology for microencapsulation, HN25 and PC12 cells have successfully been encapsulated while maintaining vitality.


Assuntos
Alginatos , Células Cromafins/transplante , Composição de Medicamentos/métodos , Neurônios/transplante , Medula Suprarrenal/citologia , Animais , Linhagem Celular , Sobrevivência Celular , Ácido Glucurônico , Ácidos Hexurônicos , Hipocampo/citologia , Camundongos , Ratos
4.
Lab Chip ; 7(9): 1094-110, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17713606

RESUMO

We review microfluidic platforms that enable the miniaturization, integration and automation of biochemical assays. Nowadays nearly an unmanageable variety of alternative approaches exists that can do this in principle. Here we focus on those kinds of platforms only that allow performance of a set of microfluidic functions--defined as microfluidic unit operations-which can be easily combined within a well defined and consistent fabrication technology to implement application specific biochemical assays in an easy, flexible and ideally monolithically way. The microfluidic platforms discussed in the following are capillary test strips, also known as lateral flow assays, the "microfluidic large scale integration" approach, centrifugal microfluidics, the electrokinetic platform, pressure driven droplet based microfluidics, electrowetting based microfluidics, SAW driven microfluidics and, last but not least, "free scalable non-contact dispensing". The microfluidic unit operations discussed within those platforms are fluid transport, metering, mixing, switching, incubation, separation, droplet formation, droplet splitting, nL and pL dispensing, and detection.


Assuntos
Bioensaio/instrumentação , Bioensaio/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Bioensaio/tendências , Desenho de Equipamento , Análise de Falha de Equipamento , Técnicas Analíticas Microfluídicas/tendências , Análise de Sequência com Séries de Oligonucleotídeos/tendências , Avaliação da Tecnologia Biomédica
5.
Lab Chip ; 6(6): 776-81, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16738730

RESUMO

We present a centrifugal process for the extraction of plasma from sediment by a decanting structure, terminating with metered plasma which is readily available for subsequent on-disk processing. Our technique supplies 2 microl plasma from 5 microl of whole blood at moderate spinning frequencies of 40 Hz within 20 s, only. The residual cell concentration in the purified plasma amounts to less than 0.11%, independent of the frequency of rotation. A capillary duct connects the extracted plasma to subsequent on-disk processing units.


Assuntos
Centrifugação/métodos , Plasma , Sangue , Sedimentação Sanguínea , Eritrócitos/citologia , Humanos
6.
J Colloid Interface Sci ; 336(2): 634-41, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19428020

RESUMO

A centrifugally driven pulse-free flow has been used for generation of tripolyphosphate (TPP)-gelated chitosan beads with tunable diameters ranging from 148 to 257 microm. The production process requires a single motor as the sole actively actuated component. The 2% (w/w) chitosan solution was extruded through a polymeric nozzle with an inner diameter of 127 microm in the centrifugal field ranging from 93 to 452 g and the drops were collected in an Eppendorf tube containing 10% (w/w) TPP solution at pH 4.0. The reproducibility of the bead diameters out of different nozzles was very good with overall CVs of the bead diameters down to 15% and the production rate was 45 beads per second per nozzle at 44 Hz rotor frequency. The production rate was proportional to the sixth power of the rotor frequency, which was explained by the non-Newtonian behaviour of the chitosan solution with a flow behaviour index of 0.466. An analytical model for the bead diameter and production rate has been presented and validated by the experimental data. The shrinkage of chitosan drops during gelation was estimated from the observations and the theoretical model.


Assuntos
Quitosana/química , Microesferas , Manufaturas , Métodos , Tamanho da Partícula , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA