Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19163-19174, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859057

RESUMO

Advancing on previous reports, we utilize quasi-bound states in the continuum (q-BICs) supported by a metasurface of TiO2 meta-atoms with broken inversion symmetry on an SiO2 substrate, for two possible applications. Firstly, we demonstrate that by tuning the metasurface's asymmetric parameter, a spectral overlap between a broad q-BIC and a narrow magnetic dipole resonance is achieved, yielding an electromagnetic induced transparency analogue with a 50 µs group delay. Secondly, we have found that, due to the strong coupling between the q-BIC and WS2 exciton at room temperature and normal incidence, by integrating a single layer of WS2 to the metasurface, a 37.9 meV Rabi splitting in the absorptance spectrum with 50% absorption efficiency is obtained. These findings promise feasible two-port devices for visible range slow-light characteristics or nanoscale excitonic coupling.

2.
Opt Lett ; 46(16): 3953-3956, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388783

RESUMO

Obtaining functional devices with tunable features is beneficial to advance terahertz (THz) science and technology. Here, we propose multifunctional gradient metasurfaces that are composed of a periodic array of binary Si microcylinders integrated with VO2 and graphene. The metasurfaces act as transmittive (reflective) beamsplitters for the dielectric (metallic) phase of VO2 with a switchable characteristic. Moreover, by integrating the metasurfaces with graphene and modifying its chemical potential, one can tune the intensity of the split beam as well as obtain nearly perfect resonant absorptions. Consequently, the proposed metasurfaces can find potential applications in THz interferometers, multiplexers, and light absorbers.

3.
Opt Express ; 26(13): 16940-16954, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119512

RESUMO

In this paper, we propose an electrically tunable mid-infrared plasmonic-phononic absorber with omnidirectional and polarization insensitive nearly perfect resonant absorption characteristics. The absorber consists of a graphene/hexagonal boron nitride (hBN)/graphene multilayer on top of a gold bottom reflector separated by a dielectric spacer. The graphene/hBN/graphene multilayer is patterned as a hole array in square lattice. We analytically and numerically prove that, due to the support of hybrid plasmon-phonon-polaritons, nearly perfect multi-resonant absorption peaks with high quality factors are obtained both inside and outside of the Reststrahlen band of hBN. As a result of the hybridization of graphene plasmons with the hyperbolic phonon polaritons of hBN, the high quality resonant absorptions of the metamaterial are almost unaffected by decreasing the phenomenological electron relaxation time of graphene. Moreover, the obtained resonances can be effectively tuned in practice due to the continuity of the graphene layers in the hole array metamaterial. These features make the graphene-hBN metamaterial a skeptical design for practical purposes and mid-infrared multi-functional operations such as sensing.

4.
Opt Express ; 25(25): 31970-31987, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245865

RESUMO

In this paper, we numerically demonstrate mid-IR nearly perfect resonant absorption and coherent thermal emission for both polarizations and wide angular region using multilayer designs of unpatterned films of hexagonal boron nitride (hBN). In these optimized structures, the films of hBN are transferred onto a Ge spacer layer on top of a one-dimensional photonic crystal (1D PC) composed of alternating layers of KBr and Ge. According to the perfect agreements between our analytical and numerical results, we discover that the mentioned optical characteristic of the hBN-based 1D PCs is due to a strong coupling between localized photonic modes supported by the PC and the phononic modes of hBN films. These coupled modes are referred as Tamm phonons. Moreover, our findings prove that the resonant absorptions can be red- or blue-shifted by changing the thickness of hBN and the spacer layer. The obtained results in this paper are beneficial for designing coherent thermal sources, light absorbers, and sensors operating within 6.2 µm to 7.3 µm in a wide angular range and both polarizations. The planar and lithography free nature of this multilayer design is a prominent factor that makes it a large scale compatible design.

5.
Opt Express ; 25(22): 27624-27634, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092233

RESUMO

In this work, we propose an optimum unit cell arrangement to obtain near absolute polarization insensitivity in a metal-insulator-metal (MIM) based ultra-broadband perfect absorber. Our findings prove that upon utilizing this optimum arrangement, the response of the absorber is retained and unchanged over all arbitrary incidence light polarizations, regardless of the shape of the top metal patch. First, the impact of the geometry of the top nanopatch resonators on the absorption bandwidth of the overall structure is explored. Then, the response of the MIM design for different incidence polarizations and angles is scrutinized. Finally, the proposed design is fabricated and characterized.

6.
Micromachines (Basel) ; 14(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36838070

RESUMO

Among the transitional metal dichalcogenides (TMDCs), molybdenum disulfide (MoS2) is considered an outstanding candidate for biosensing applications due to its high absorptivity and amenability to ionic current measurements. Dielectric metasurfaces have also emerged as a powerful platform for novel optical biosensing due to their low optical losses and strong near-field enhancements. Once functionalized with TMDCs, dielectric metasurfaces can also provide strong photon-exciton interactions. Here, we theoretically integrated a single layer of MoS2 into a CMOS-compatible asymmetric dielectric metasurface composed of TiO2 meta-atoms with a broken in-plane inversion symmetry on an SiO2 substrate. We numerically show that the designed MoS2-integrated metasurface can function as a high-figure-of-merit (FoM=137.5 RIU-1) van der Waals-based biosensor due to the support of quasi-bound states in the continuum. Moreover, owing to the critical coupling of the magnetic dipole resonances of the metasurface and the A exciton of the single layer of MoS2, one can achieve a 55% enhanced excitonic absorption by this two-port system. Therefore, the proposed design can function as an effective biosensor and is also practical for enhanced excitonic absorption and emission applications.

7.
Appl Opt ; 51(15): 2909-16, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22614593

RESUMO

In this paper, we theoretically study the electromagnetic surface waves localized at the interface between a homogeneous dielectric medium and a semi-infinite, one-dimensional photonic crystal (1D PC). The semi-infinite 1D PC is made of alternative layers of right-handed (RH) and dispersive left-handed (LH) materials in the presence of a liquid crystal (LC) cap layer. In this structure, we derive the surface waves dispersion relation with tunable switching and localization by using an analytical direct matching procedure within the Kronig-Penny model. It is shown that, for both of layer arrangements, the variation of molecules orientation of the LC cap layer acts as an effective tool to tune the type (tuned switching) and localization of the surface waves and it also can create a surface mode with maximum localization in the first frequency bandgap.

8.
RSC Adv ; 10(50): 29945-29955, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35518258

RESUMO

The phase change behavior of vanadium dioxide (VO2) has been widely explored in a variety of optical and photonic applications. Commonly, its optical parameters have been studied in two extreme regimes: hot (metallic) and cold (insulating) states. However, in the transition temperatures, VO2 acts like an inherent metamaterial with mixed metallic-insulating character. In this range, the portions of metallic and insulating inclusions are tuned by temperature, and therefore a gradual change of optical parameters can be achieved. In this paper, a universal hybrid modeling approach is developed to model VO2 in the intermediate region. For this aim, the measured reflectivity data, is analyzed and matched through the transfer matrix method (TMM) simulations where an effective medium theory (EMT) is employed. Based on the findings of this approach, not only the relative portions of inclusions are tailored but also their grain shapes are significantly altered in the transition range. Finally, the modeling approach is testified by experimental findings through dynamic device applications operating at short and mid infrared wavelengths. In addition, the hysteretic behaviors on electrical, optical, and structural parameters of the VO2 film along the heating and cooling cycles are demonstrated by the experiments and scrutinized by the simulations.

9.
Sci Rep ; 9(1): 290, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670767

RESUMO

In this article, a lithography-free multilayer based color filter is realized using a proper series connection of two cavities that shows relatively high efficiency, high color purity, and a wide view angle. The proposed structure is a metal-insulator-metal-insulator-semiconductor (MIMIS) design. To optimize the device performance, at the first step, transfer matrix method (TMM) modeling is utilized to find the right choices of materials for each layer. Simulations are carried out later on to optimize the geometries of the layers to obtain our desired colors. Finally, the optimized devices are fabricated and experimentally characterized to evaluate our modelling findings. The characterization results of the fabricated samples prove the successful formation of efficient and wide view angle color filters. Unlike previously reported FP based designs that act as a band-stop filter in reflection mode (absorbing a narrow frequency range and reflecting the rest of the spectrum), this design generates a specific color by reflecting a narrow spectral range and absorbing the rest of the spectrum. The findings of this work can be extended to other multilayer structures where an efficient connection of cavities in a tandem scheme can propose functionalities that cannot be realized with conventional FP resonators.

10.
Sci Rep ; 8(1): 13209, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181598

RESUMO

Being one-atom thick and tunable simultaneously, graphene plays the revolutionizing role in many areas. The focus of this paper is to investigate the modal characteristics of surface waves in structures with graphene in the far-infrared (far-IR) region. We discuss the effects exerted by substrate permittivity on propagation and localization characteristics of surface-plasmon-polaritons (SPPs) in single-layer graphene and theoretically investigate characteristics of the hybridized surface-phonon-plasmon-polaritons (SPPPs) in graphene/LiF/glass heterostructures. First, it is shown how high permittivity of substrate may improve characteristics of graphene SPPs. Next, the possibility of optimization for surface-phonon-polaritons (SPhPs) in waveguides based on LiF, a polar dielectric with a wide polaritonic gap (Reststrahlen band) and a wide range of permittivity variation, is demonstrated. Combining graphene and LiF in one heterostructure allows to keep the advantages of both, yielding tunable hybridized SPPPs which can be either forwardly or backwardly propagating. Owing to high permittivity of LiF below the gap, an almost 3.2-fold enhancement in the figure of merit (FoM), ratio of normalized propagation length to localization length of the modes, can be obtained for SPPPs at 5-9 THz, as compared with SPPs of graphene on conventional glass substrate. The enhancement is efficiently tunable by varying the chemical potential of graphene. SPPPs with characteristics which strongly differ inside and around the polaritonic gap are found.

11.
Sci Rep ; 7(1): 4741, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684779

RESUMO

We numerically validate and experimentally realize considerable funneling of electromagnetic energy through a subwavelength aperture that is covered with an epsilon-near-zero metamaterial (ENZ). The epsilon-near-zero metamaterial is composed of two layers of metasurfaces and operates at microwave frequencies. We demonstrate that the presence of the metamaterial at the inner and outer sides of the aperture not only lead to a significant enhancement in light transmission, but also cause a directional emission of light extracting from this hybrid system. In addition to these experimental results, we theoretically demonstrate the same concept in mid-IR region for a subwavelength gold aperture with indium tin oxide as an epsilon-near-zero material. Moreover, we found that using a dielectric spacer in-between the sunwavelength aperture and the ENZ medium, it is possible to red-shift the enhancement/directional frequency of the system.

12.
Sci Rep ; 7(1): 14872, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093519

RESUMO

We report ultra-broadband perfect absorbers for visible and near-infrared applications that are based on multilayers of metal-insulator (MI) stacks fabricated employing straightforward layer deposition techniques and are, therefore, lithography-free and large-scale compatible. We scrutinize the impact of different physical parameters of an MIMI absorber structure with analysis of each contributing metal layer. After obtaining the optimal design parameters (i.e. material selection and their thicknesses) with both simulation and numerical analysis (Transfer Matrix Method) methods, an experimental sample is fabricated and characterized. Our fabricated MIMI absorber consists of an optically thick tungsten (W) back reflector layer followed by 80 nm aluminum oxide (Al2O3), 10 nm titanium (Ti), and finally another 80 nm Al2O3. The experimental results demonstrate over 90 percent absorption between 400 nm and 1640 nm wavelengths that is optimized for ultra-broadband absorption in MIMI structures. Moreover, the impedance matching method with free-space is used to shed light on the metallic layer selection process.

13.
Sci Rep ; 7(1): 4755, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684879

RESUMO

In this paper, we propose a facile route to fabricate a metal insulator multilayer stack to obtain ultra-broadband, wide angle behavior from the structure. The absorber, which covers near infrared (NIR) and visible (Vis) ranges, consists of a metal-insulator-metal-insulator (MIMI) multilayer where the middle metal layer has a variant thickness. It is found that this non-uniform thickness of the metal provides us with an absorption that is much broader compared to planar architecture. In the non-uniform case, each thickness is responsible for a specific wavelength range where the overall absorption is the superposition of these resonant responses and consequently a broad, perfect light absorption is attained. We first numerically examine the impact of different geometries on the overall light absorption property of the multilayer design. Afterward, we fabricate the designs and characterize them to experimentally verify our numerical findings. Characterizations show a good agreement with numerical results where the optimum absorption bandwidth for planar design is found to be 620 nm (380 nm-1000 nm) and it is significantly boosted to an amount of 1060 nm (350 nm-1410 nm) for multi-thickness case.

14.
Nanoscale ; 9(43): 16652-16660, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-28901365

RESUMO

In this paper, we propose a facile and large scale compatible design to obtain perfect ultrabroadband light absorption using metal-dielectric core-shell nanowires. The design consists of atomic layer deposited (ALD) Pt metal uniformly wrapped around hydrothermally grown titanium dioxide (TiO2) nanowires. It is found that the randomly oriented dense TiO2 nanowires can impose excellent light trapping properties where the existence of an ultrathin Pt layer (with a thickness of 10 nm) can absorb the light in an ultrabroadband frequency range with an amount near unity. Throughout this study, we first investigate the formation of resonant modes in the metallic nanowires. Our findings prove that a nanowire structure can support multiple longitudinal localized surface plasmons (LSPs) along its axis together with transverse resonance modes. Our investigations showed that the spectral position of these resonance peaks can be tuned with the length, radius, and orientation of the nanowire. Therefore, TiO2 random nanowires can contain all of these features simultaneously in which the superposition of responses for these different geometries leads to a flat perfect light absorption. The obtained results demonstrate that taking unique advantages of the ALD method, together with excellent light trapping of chemically synthesized nanowires, a perfect, bifacial, wide angle, and large scale compatible absorber can be made where an excellent performance is achieved while using less materials.

15.
Sci Rep ; 7(1): 15079, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118435

RESUMO

In this paper, we demonstrate a facile, lithography free, and large scale compatible fabrication route to synthesize an ultra-broadband wide angle perfect absorber based on metal-insulator-metal-insulator (MIMI) stack design. We first conduct a simulation and theoretical modeling approach to study the impact of different geometries in overall stack absorption. Then, a Pt-Al2O3 multilayer is fabricated using a single atomic layer deposition (ALD) step that offers high repeatability and simplicity in the fabrication step. In the best case, we get an absorption bandwidth (BW) of 600 nm covering a range of 400 nm-1000 nm. A substantial improvement in the absorption BW is attained by incorporating a plasmonic design into the middle Pt layer. Our characterization results demonstrate that the best configuration can have absorption over 0.9 covering a wavelength span of 400 nm-1490 nm with a BW that is 1.8 times broader compared to that of planar design. On the other side, the proposed structure retains its absorption high at angles as wide as 70°. The results presented here can serve as a beacon for future performance enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA