Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(4 Pt 2): 046212, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15903775

RESUMO

We investigate the response of two-dimensional pattern-forming systems with a broken up-down symmetry, such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:2 and 1:1 ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate the generic response scenarios to a specific pattern-forming system. The nonlinear competition between stripe patterns and distorted hexagons is explored and their range of existence, stability, and coexistence is determined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation, single-mode solutions (stripes) are favored close to threshold for modulation amplitudes beyond some critical value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of existence shrinks to zero with increasing values of the modulation amplitude. Furthermore, depending on the modulation amplitude, the transition between stripes and distorted hexagons is either subcritical or supercritical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA