Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552245

RESUMO

Domestication and artificial selection during production-oriented breeding have greatly shaped the level of genomic variability in sheep. However, the genetic variation associated with increased reproduction remains elusive. Here, two groups of samples from consecutively monotocous and polytocous sheep were collected for genome-wide association, transcriptomic, proteomic, and metabolomic analyses to explore the genetic variation in fecundity in Tibetan sheep. Genome-wide association study revealed strong associations between BMPR1B (p.Q249R) and litter size, as well as between PAPPA and lambing interval; these findings were validated in 1,130 individuals. Furthermore, we constructed the first single-cell atlas of Tibetan sheep ovary tissues and identified a specific mural granulosa cell subtype with PAPPA-specific expression and differential expression of BMPR1B between the two groups. Bulk RNA-seq indicated that BMPR1B and PAPPA expressions were similar between the two groups of sheep. 3D protein structure prediction and coimmunoprecipitation analysis indicated that mutation and mutually exclusive exons of BMPR1B are the main mechanisms for prolific Tibetan sheep. We propose that PAPPA is a key gene for stimulating ovarian follicular growth and development, and steroidogenesis. Our work reveals the genetic variation in reproductive performance in Tibetan sheep, providing insights and valuable genetic resources for the discovery of genes and regulatory mechanisms that improve reproductive success.


Assuntos
Estudo de Associação Genômica Ampla , Multiômica , Humanos , Feminino , Ovinos/genética , Animais , Tibet , Proteômica , Reprodução , Mutação
2.
BMC Genomics ; 25(1): 574, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849762

RESUMO

BACKGROUND: The Qinghai Tibetan sheep, a local breed renowned for its long hair, has experienced significant deterioration in wool characteristics due to the absence of systematic breeding practices. Therefore, it is imperative to investigate the molecular mechanisms underlying follicle development in order to genetically enhance wool-related traits and safeguard the sustainable utilization of valuable germplasm resources. However, our understanding of the regulatory roles played by coding and non-coding RNAs in hair follicle development remains largely elusive. RESULTS: A total of 20,874 mRNAs, 25,831 circRNAs, 4087 lncRNAs, and 794 miRNAs were annotated. Among them, we identified 58 DE lncRNAs, 325 DE circRNAs, 924 DE mRNAs, and 228 DE miRNAs during the development of medullary primary hair follicle development. GO and KEGG functional enrichment analyses revealed that the JAK-STAT, TGF-ß, Hedgehog, PPAR, cGMP-PKG signaling pathway play crucial roles in regulating fibroblast and epithelial development during skin and hair follicle induction. Furthermore, the interactive network analysis additionally identified several crucial mRNA, circRNA, and lncRNA molecules associated with the process of primary hair follicle development. Ultimately, by investigating DEmir's role in the ceRNA regulatory network mechanism, we identified 113 circRNA-miRNA pairs and 14 miRNA-mRNA pairs, including IGF2BP1-miR-23-x-novel-circ-01998-MSTRG.7111.3, DPT-miR-370-y-novel-circ-005802-MSTRG.14857.1 and TSPEAR-oar-miR-370-3p-novel-circ-005802- MSTRG.10527.1. CONCLUSIONS: Our study offers novel insights into the distinct expression patterns of various transcription types during hair follicle morphogenesis, establishing a solid foundation for unraveling the molecular mechanisms that drive hair development and providing a scientific basis for selectively breeding desirable wool-related traits in this specific breed.


Assuntos
Redes Reguladoras de Genes , Folículo Piloso , MicroRNAs , RNA Circular , RNA Longo não Codificante , RNA Mensageiro , Animais , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ovinos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica , Pele/metabolismo , Transcriptoma , Feto/metabolismo
3.
BMC Genomics ; 25(1): 739, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080522

RESUMO

BACKGROUND: Elucidating the genetic variation underlying phenotypic diversity will facilitate improving production performance in livestock species. The Tibetan sheep breed in China holds significant historical importance, serving as a fundamental pillar of Qinghai's animal husbandry sector. The Plateau-type Tibetan sheep, comprising 90% of the province's population, are characterized by their tall stature and serve as the primary breed among Tibetan sheep. In contrast, Zhashijia sheep exhibit larger size and superior meat quality. These two species provide an excellent model for elucidating the genetic basis of body size variation. Therefore, this study aims to conduct a comprehensive genome-wide association study on these two Tibetan sheep breeds to identify single nucleotide polymorphism loci and regulatory genes that influence body size traits in Tibetan sheep. RESULT: In this study, the phenotypic traits of body weight, body length, body height, chest circumference, chest depth, chest width, waist angle width, and pipe circumference were evaluated in two Tibetan sheep breeds: Plateau-type sheep and Zhashijia Tibetan sheep. Whole genome sequencing generated 48,215,130 high-quality SNPs for genome-wide association study. Four methods were applied and identified 623 SNPs significantly associated with body size traits. The significantly associated single nucleotide polymorphisms identified in this study are located near or within 111 candidate genes. These genes exhibit enrichment in the cAMP and Rap1 signaling pathways, significantly affecting animal growth, and body size. Specifically, the following genes were associated: ASAP1, CDK6, FRYL, NAV2, PTPRM, GPC6, PTPRG, KANK1, NTRK2 and ADCY8. CONCLUSION: By genome-wide association study, we identified 16 SNPs and 10 candidate genes associated with body size traits in Tibetan sheep, which hold potential for application in genomic selection breeding programs in sheep. Identifying these candidate genes will establish a solid foundation for applying molecular marker-assisted selection in sheep breeding and improve our understanding of body size control in farmed animals.


Assuntos
Tamanho Corporal , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Animais , Tamanho Corporal/genética , Ovinos/genética , Ovinos/anatomia & histologia , Tibet , Locos de Características Quantitativas
4.
Animals (Basel) ; 14(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123678

RESUMO

The types and morphology of sheep horns have been extensively researched, yet the genetic foundation underlying the emergence of diverse horn characteristics during the breeding of polled Tibetan sheep has remained elusive. Genome-wide association analysis (GWAS) was performed on 103 subtypes (normal large horn, scurs, and polled) differentiated from G2 (offspring (G2) of parent (G1) of polled) of the polled core herd. Six single nucleotide polymorphisms (SNPs) located on chromosome 10 of the relaxin family peptide receptor 2 (RXFP2) gene exhibited positive correlations with horn length, horn base circumference, and horn base interval. Furthermore, in genotyping 382 G2 individuals, significant variations were observed for each specific horn type. Three additional mutations were identified near the target SNP upstream of the amplification product. Finally, the RXFP2-specific haplotype associated with the horned trait effectively maintained horn length, horn base circumference, and horn base interval in Tibetan sheep, as confirmed by population validation of nine loci in a sample size of 1125 individuals. The present study offers novel insights into the genetic differentiation of the horned type during improvement breeding and evolution, thereby establishing a robust theoretical foundation for polled Tibetan sheep breeding and providing valuable guidance for practical production.

5.
Genes (Basel) ; 15(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062700

RESUMO

Tibetan sheep are vital to the ecosystem and livelihood of the Tibetan Plateau; however, traditional breeding methods limit their production and growth. Modern molecular breeding techniques are required to improve these traits. This study identified a single nucleotide polymorphism (SNP) in myostatin (MSTN) and Callipyge in Tibetan sheep. The findings indicated notable associations between MSTN genotypes and growth traits including birth weight (BW), body length (BL), chest width (ChW), and chest circumference (ChC), as well as a particularly strong association with cannon circumference (CaC) at 2 months of age. Conversely, Callipyge polymorphisms did not have a significant impact on Tibetan sheep. Moreover, the analyses revealed a significant association between sex and BW or hip width (HW) at 2 months of age and ChW, ChC, and CaC at 4 months of age. Furthermore, the study's results suggested that the genotype of MSTN as a GA was associated with a notable sex effect on BW, while the genotype of Callipyge (CC) showed a significant impact of sex on CaC at 2 months of age. These results indicated that the SNP of MSTN could potentially serve as a molecular marker for early growth traits in Tibetan sheep.


Assuntos
Miostatina , Polimorfismo de Nucleotídeo Único , Animais , Miostatina/genética , Ovinos/genética , Ovinos/crescimento & desenvolvimento , Feminino , Masculino , Tibet , Genótipo , Fenótipo , Peso ao Nascer/genética , Cruzamento
6.
Sci Rep ; 13(1): 17283, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828092

RESUMO

Copy number variation (CNV) is a genetic structural polymorphism important for phenotypic diversity and important economic traits of livestock breeds, and it plays an important role in the desired genetic variation. This study used whole genome sequencing to detect the CNV variation in the genome of 6 local Tibetan sheep groups. We detected 69,166 CNV events and 7230 copy number variable regions (CNVRs) after merging the overlapping CNVs, accounting for 2.72% of the reference genome. The CNVR length detected ranged from 1.1 to 1693.5 Kb, with a total length of 118.69 Mb and an average length of 16.42 Kb per CNVR. Functional GO cluster analysis showed that the CNVR genes were mainly involved in sensory perception systems, response to stimulus, and signal transduction. Through CNVR-based Vst analysis, we found that the CACNA2D3 and CTBP1 genes related to hypoxia adaptation, the HTR1A gene related to coat color, and the TRNAS-GGA and PIK3C3 genes related to body weight were all strongly selected. The findings of our study will contribute novel insights into the genetic structural variation underlying hypoxia adaptation and economically important traits in Tibetan sheep.


Assuntos
Variações do Número de Cópias de DNA , Herança Multifatorial , Animais , Ovinos/genética , Tibet , Genoma/genética , Hipóxia/genética , Polimorfismo de Nucleotídeo Único
7.
Anim Biosci ; 36(7): 991-1002, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37170524

RESUMO

OBJECTIVE: This study aimed to elucidate the underlying gene regions responsible for productive, phenotypic or adaptive traits in different ecological types of Tibetan sheep and the discovery of important genes encoding valuable traits. METHODS: We used whole-genome resequencing to explore the genetic relationships, phylogenetic tree, and population genetic structure analysis. In addition, we identified 28 representative Tibetan sheep single-nucleotide polymorphisms (SNPs) and genomic selective sweep regions with different traits in Tibetan sheep by fixation index (Fst) and the nucleotide diversity (θπ) ratio. RESULTS: The genetic relationships analysis showed that each breed partitioned into its own clades and had close genetic relationships. We also identified many potential breed-specific selective sweep regions, including genes associated with hypoxic adaptability (MTOR, TRHDE, PDK1, PTPN9, TMTC2, SOX9, EPAS1, PDGFD, SOCS3, TGFBR3), coat color (MITF, MC1R, ERCC2, TCF25, ITCH, TYR, RALY, KIT), wool traits (COL4A2, ERC2, NOTCH2, ROCK1, FGF5, SOX9), and horn phenotypes (RXFP2). In particular, a horn-related gene, RXFP2, showed the four most significantly associated SNP loci (g. 29481646 A>G, g. 29469024 T>C, g. 29462010 C>T, g. 29461968 C>T) and haplotypes. CONCLUSION: This finding demonstrates the potential for genetic markers in future molecular breeding programs to improve selection for horn phenotypes. The results will facilitate the understanding of the genetic basis of production and adaptive unique traits in Chinese indigenous Tibetan sheep taxa and offer a reference for the molecular breeding of Tibetan sheep.

8.
Front Physiol ; 13: 921709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812328

RESUMO

This experiment simulated the hypoxic environment caused by actual production operations in fish farming (i.e., catching, gathering, transferring, and weighting) to study the effects of acute hypoxic conditions on the physiological and metabolic responses of triploid rainbow trout (O. mykiss). Two groups of fish weighting 590 g were sampled in the normoxia group (dissolved oxygen above 7 mg/L) and hypoxia group (dissolved oxygen ranged from 2 to 5 mg/L for 10 min). The results showed that 1) regarding stress response, hypoxia increased plasma levels of cortisol, heat shock protein 70 (HSP-70), lysozyme, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatine phosphokinase (CPK); induced the expression of hepatic genes encoding nuclear factor erythroid 2 related factor 2 (Nrf2), interferon γ (IFN-γ) and interleukin-1ß (IL-1ß). 2) Regarding metabolism response, hypoxia increased plasma levels of globulin (GLOB), glucose (GLU), triglyceride (TG) and lactate dehydrogenase (LDH); upregulated the hepatic gene expression of phosphoenolpyruvate carboxykinase, (PEPCK), pyruvate dehydrogenase kinase (PDK1), acetyl-CoA carboxylase (ACC) and acetyl-CoA oxidase (ACO); downregulated the hepatic gene expression of carnitine palmitoyl transferase 1 (CPT1); and unchanged the expression of hepatic genes in glycolysis and autophagy. 3) In response to hypoxia-inducible factors (HIFs), the hepatic HIF-2α gene was activated in the hypoxia group, but HIF-1α gene expression remained unchanged. Thus, during acute hypoxic stress, triploid rainbow trout were in a defensive state, with an enhanced immune response and altered antioxidant status. Additionally, the hepatic mitochondrial oxidation of glucose- and lipid-derived carbon in trout was suppressed, and hepatic gluconeogenesis and lipid synthesis were activated, which might be regulated by the HIF-2α pathway.

9.
Front Genet ; 13: 831599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559027

RESUMO

The aim of this study was to locate SSTR5 polymorphisms and evaluate their association with growth traits in Hulun Buir sheep. The study followed up 884 Hulun Buir sheep from birth to 16 months of age, which were born in the same pasture and the same year, and a consistent grazing management strategy was maintained. The birth weight (BRW) was recorded at birth, and body weight (BW), body height (BH), body length (BL), chest circumference (ChC), chest depth (ChD), chest width (ChW), hip width (HW), and cannon circumference (CaC) were measured at 4 and 9 months of age. BW, BH, BL, ChD, HW, and CaC were also recorded at 16 months of age. Based on the growth traits, 233 sheep were selected as experimental animals. Sanger sequencing was performed, and seven single-nucleotide polymorphisms (SNPs) were identified. Association analyses of the SNPs and the growth traits were then conducted. Seven SNPs of the SSTR5 exhibited moderate polymorphism (0.25

10.
Genes (Basel) ; 13(4)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456472

RESUMO

The identification of candidate genes and genetic variations associated with growth traits is important for sheep breeding. Insulin like growth factor 1 (IGF1) and insulin like growth factor 1 receptor (IGF1R) are well-accepted candidate genes that affect animal growth and development. The current study attempted to assess the association between IGF1 and IGF1R genetic polymorphisms and growth traits in Hulun Buir sheep. To achieve this goal, we first identified three and ten single nucleotide polymorphisms (SNPs) in exons of IGF1 and IGF1R in Hulun Buir sheep and then constructed six haplotypes of IGF1R based on linkage disequilibrium, respectively. Association studies were performed between SNPs and haplotypes of IGF1 and IGF1R with twelve growth traits in a population encompassing 229 Hulun Buir sheep using a general linear model. Our result indicated three SNPs in IGF1 were significantly associated with four growth traits (p < 0.05). In IGF1R, three SNPs and two haplotype blocks were significantly associated with twelve growth traits (p < 0.05). The combined haplotype H5H5 and H5H6 in IGF1R showed the strong association with 12 superior growth traits in Hulun Buir sheep (p < 0.05). In conclusion, we identified SNPs and haplotype combinations associated with the growth traits, which provided genetic resources for marker-assisted selection (MAS) in Hulun Buir sheep breeding.


Assuntos
Fator de Crescimento Insulin-Like I , Polimorfismo de Nucleotídeo Único , Animais , Haplótipos , Fator de Crescimento Insulin-Like I/genética , Desequilíbrio de Ligação , Fenótipo , Ovinos/genética
11.
Genes (Basel) ; 13(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052417

RESUMO

This study was conducted to evaluate SSTR1 gene polymorphisms and their association with growth traits in Hulun Buir sheep. We followed 233 Hulun Buir sheep from birth to 16 months of age, born in the same pasture and on the same year under a consistent grazing conditions. The body weight (BW), body height (BH), body length (BL), chest circumference (ChC), chest depth (ChD), chest width (ChW), hip width (HW), and cannon circumference (CaC) were measured and recorded at birth, 4 months, 9 months, and 16 months of age. The polymorphisms of the SSTR1 gene in Hulun Buir sheep were excavated using exon sequencing, and association analyses of between SNPs and growth traits at each growth stage were conducted. The results showed that there were four SNPs in Exon 2 of the SSTR1 gene, SNP1, SNP2, and SNP3 were low mutation sites, and SNP4 was a moderate mutation site. Four SNPs were consistent with Hardy-Weinberg equilibrium, and all of them were synonymous mutations. The association analyses found that the genotypes of SNP2 were significantly associated with WW and BH at 4 months of age, BW, BL, ChC, and HW at 9 months of age (p < 0.05), and extremely significantly associated with ChD at 4 and 9 months of age (p < 0.01). There were significant associations between SNP3 and BH at 9 months of age, between SNP4 and ChD, ChW, and CaC at 9 months of age, and BW and ChC at 16 months of age (p < 0.05). There were no detectable associations with growth traits among the seven haplotypes between the SNP1, 3, and 4 of a strong linkage disequilibrium (p > 0.05). These results indicated that SNP2, SNP3, and SNP4 may be used as molecular markers for growth traits of Hulun Buir sheep.


Assuntos
Peso Corporal , Haplótipos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Receptores de Somatostatina/genética , Ovinos/genética , Animais , Estudos de Associação Genética , Genótipo , Fenótipo , Ovinos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA