Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Dev Technol ; 16(6): 549-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21932931

RESUMO

A case study has been developed to illustrate one way of incorporating a Quality by Design approach into formulation and process development for a small molecule, freeze-dried parenteral product. Sodium ethacrynate was chosen as the model compound. Principal degradation products of sodium ethacrynate result from hydrolysis of the unsaturated ketone in aqueous solution, and dimer formation from a Diels-Alder condensation in the freeze-dried solid state. When the drug crystallizes in a frozen solution, the eutectic melting temperature is above -5°C. Crystallization in the frozen system is affected by pH in the range of pH 6-8 and buffer concentration in the range of 5-50 mM, where higher pH and lower buffer concentration favor crystallization. Physical state of the drug is critical to solid state stability, given the relative instability of amorphous drug. Stability was shown to vary considerably over the ranges of pH and buffer concentration examined, and vial-to-vial variability in degree of crystallinity is a potential concern. The formulation design space was constructed in terms of pH and drug concentration, and assuming a constant 5 mM concentration of buffer. The process design space is constructed to take into account limitations on the process imposed by the product and by equipment capability.


Assuntos
Desenho de Fármacos , Ácido Etacrínico/química , Soluções Tampão , Química Farmacêutica , Cristalização , Estabilidade de Medicamentos , Liofilização , Concentração de Íons de Hidrogênio , Hidrólise , Temperatura de Transição
2.
Diabetes Technol Ther ; 9 Suppl 1: S16-27, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17563300

RESUMO

The Exubera system (Pfizer, New York, NY/Nektar Therapeutics, San Carlos, CA) is an integration of five major new technologies: protein formulation, powder processing, powder filling, drug packaging, and delivery device. The product provides a simple interface, where the patient interacts only with the delivery device and powder packaging. These components were designed together to assure repeatable dosing when used by a wide range of patients under real-world life-style and handling conditions. The device design is purely mechanical, using patient-generated compressed air as the energy source. Upon actuation, a sonic discharge of air through the novel release unit reproducibly extracts, de-agglomerates, and disperses the inhalation powder into a respirable aerosol. A clear holding chamber allows for patient feedback via dose visualization and separates aerosol cloud generation from the inspiratory effort. The Exubera product was tested under a wide range of typical use conditions and potential misuse scenarios and following long-term usage in clinical trials. These comprehensive characterization programs demonstrated robust aerosol and mechanical performance, confirming the design intent of the inhaler. These studies provide assurance of consistent and reliable dose delivery in a real-world use of the product.


Assuntos
Administração por Inalação , Insulina/uso terapêutico , Pulmão/fisiologia , Aerossóis , Desenho de Equipamento , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/farmacocinética , Termodinâmica , Resultado do Tratamento
3.
Diabetes Technol Ther ; 7(6): 896-906, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16386095

RESUMO

Development of a product for pulmonary delivery of insulin presented significant technology challenges for this first-in-class pharmaceutical product. These included developing (a) a chemically stabilized protein, (b) a dry powder formulation exhibiting required aerosol physical characteristics, (c) low-dose powder filling and packaging technology, and (d) a mechanical device for powder dispersal and reliable dosing to the patient. The insulin drug is formulated using a novel excipient combination to create a powder with a high glass transition temperature (Tg). The high Tg minimizes insulin mobility (thus reactivity), enabling ambient storage conditions. The formulation composition results in minimal hygroscopicity, where customized packaging produced product ruggedness to humidity. The formulated insulin powder is manufactured by spray-drying. This technology was further engineered to produce the desired reproducible powder characteristics with tight control over particle size and moisture content. A solution step prior to drying assures homogeneity and minimizes dependence on the physical form of the components. Novel low-dose filling and packaging technology reproducibly meters milligram quantities of microfine powder to meet stringent quality requirements for dose control. The technology for accurate, uniform, high-throughput metering of drug powders allows for automation and is scaleable for commercial operations. Finally, the mechanical device design provides powder deagglomeration and dispersion processes in a reusable dry powder inhaler with unique characteristics. The device was designed to rely on patient-generated compressed air as the energy source. A sonic discharge of air through the novel TransJector reproducibly extracts, deagglomerates, and disperses the inhalation powder. A clear holding (spacer-type) chamber allows for patient feedback via dose visualization, and separates powder dispersal from the inspiratory effort. The EXUBERA [Pfizer (New York, NY) and sanofi-aventis (Paris, France)] product provides insulin into the bloodstream with similar reproducibly and effectiveness as subcutaneous injections.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/administração & dosagem , Insulina/química , Administração por Inalação , Fenômenos Químicos , Química Farmacêutica , Físico-Química , Humanos , Inaladores Dosimetrados , Tamanho da Partícula
4.
J Pharm Sci ; 99(9): 3698-710, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19844959

RESUMO

The effect of temperature on the chemical stability of an amorphous spray-dried insulin powder formulation (Exubera) was evaluated in the solid state at constant moisture content. The chemical stability of the powder was assessed using reversed-phase high-performance liquid chromatography (RP-HPLC) and high-performance-size exclusion chromatography (HP-SEC). The major degradants in spray-dried insulin produced during heat stressing were identified as A21-desamidoinsulin (A21) and high molecular weight protein (HMWP). As expected, the rates of formation of A21 and HMWP were observed to increase with temperature. A stretched-time kinetic model (degradation rate is proportional to the square root of time) was applied to the degradant profiles above and below the glass transition temperature (T(g)) and apparent reaction rate constants were determined. Below T(g), isothermal enthalpy of relaxation measurements were used to assess the effect of temperature on molecular mobility. The formation of A21 and HMWP was found to follow an Arrhenius temperature dependence above and below the T(g). Comparison of reaction rate constants to those estimated from structural relaxation experiments suggests that the reaction pathways to form A21 and HMWP below the T(g) may be coupled with the molecular motions involved in structural relaxation.


Assuntos
Insulina/química , Estabilidade de Medicamentos , Cinética , Difração de Pó , Pós , Proteínas Recombinantes/química , Temperatura de Transição , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA